示例#1
0
    def addOperators(self):
        """Create operators and set the relations for the component rig

        Apply operators, constraints, expressions to the hierarchy.
        In order to keep the code clean and easier to debug,
        we shouldn't create any new object in this method.

        """
        applyop.aimCns(self.ref_base,
                       self.tip_ctl,
                       axis="yx",
                       wupType=2,
                       wupVector=[1, 0, 0],
                       wupObject=self.ctl,
                       maintainOffset=False)
        applyop.aimCns(self.ref_tip,
                       self.ctl,
                       axis="-yx",
                       wupType=2,
                       wupVector=[1, 0, 0],
                       wupObject=self.tip_ctl,
                       maintainOffset=False)

        bIncrement = 1.0 / (self.settings["div"] - 1)
        blend = 0
        for i, div_cns in enumerate(self.div_cns):
            intMatrix = applyop.gear_intmatrix_op(
                self.ref_base.attr("worldMatrix"),
                self.ref_tip.attr("worldMatrix"), blend)

            applyop.gear_mulmatrix_op(intMatrix.attr("output"),
                                      div_cns.attr("parentInverseMatrix[0]"),
                                      div_cns)

            blend = blend + bIncrement
示例#2
0
    def addOperators(self):
        """Create operators and set the relations for the component rig

        Apply operators/Solvers, constraints, expressions to the hierarchy.
        In order to keep the code clean and easier to debug,
        we shouldn't create any new object in this method.

        """
        applyop.aimCns(self.ref_base,
                       self.squash_ctl,
                       axis="yx",
                       wupType=2,
                       wupVector=[1, 0, 0],
                       wupObject=self.ctl,
                       maintainOffset=False)
        applyop.aimCns(self.ref_squash,
                       self.ctl,
                       axis="-yx",
                       wupType=2,
                       wupVector=[1, 0, 0],
                       wupObject=self.squash_ctl,
                       maintainOffset=False)
        bIncrement = 1.0
        blend = 0
        for i, div_cns in enumerate(self.div_cns):
            intMatrix = applyop.gear_intmatrix_op(
                self.ref_base.attr("worldMatrix"),
                self.ref_squash.attr("worldMatrix"), blend)

            applyop.gear_mulmatrix_op(intMatrix.attr("output"),
                                      div_cns.attr("parentInverseMatrix[0]"),
                                      div_cns)

            blend = blend + bIncrement

        d = vector.getDistance(self.guide.apos[0], self.guide.apos[1])
        dist_node = node.createDistNode(self.squash_ctl, self.ctl)

        rootWorld_node = node.createDecomposeMatrixNode(
            self.ctl.attr("worldMatrix"))

        div_node = node.createDivNode(dist_node + ".distance",
                                      rootWorld_node + ".outputScaleY")

        div_node = node.createDivNode(div_node + ".outputX", d)
        rev_node = node.createReverseNode(div_node + ".outputX")
        add_node = pm.createNode("plusMinusAverage")

        add_node.input1D[0].set(1.0)
        rev_node.outputX >> add_node.input1D[1]

        div_node.outputX >> self.ref_base.scaleY
        add_node.output1D >> self.ref_base.scaleX
        add_node.output1D >> self.ref_base.scaleZ
示例#3
0
def createInterpolateTransform(objects=None, blend=.5, *args):
    """
    Create space locator and apply gear_intmatrix_op, to interpolate the his
    pose between 2 selected objects.

    Args:
        objects (None or list of 2 dagNode, optional): The 2 dagNode to
            interpolate the transform.
        blend (float, optional): The interpolation blend factor.
        *args: Maya's dummy

    Returns:
        pyNode: The new transformation witht the interpolate matrix o_node
        applied.

    """
    if objects or len(pm.selected()) >= 2:
        if objects:
            refA = objects[0]
            refB = objects[1]

        else:
            refA = pm.selected()[0]
            refB = pm.selected()[1]

        intMatrix = applyop.gear_intmatrix_op(refA.attr("worldMatrix"),
                                              refB.attr("worldMatrix"), blend)
        intTrans = primitive.addTransform(
            refA,
            refA.name() + "_INTER_" + refB.name(), datatypes.Matrix())

        applyop.gear_mulmatrix_op(intMatrix.attr("output"),
                                  intTrans.attr("parentInverseMatrix[0]"),
                                  intTrans)

        pm.displayInfo("Interpolated Transform: " + intTrans.name() +
                       " created")
    else:
        pm.displayWarning("Please select 2 objects. ")
        return

    return intTrans
示例#4
0
    def addOperators(self):
        """Create operators and set the relations for the component rig

        Apply operators, constraints, expressions to the hierarchy.
        In order to keep the code clean and easier to debug,
        we shouldn't create any new object in this method.

        """

        # Auto bend ----------------------------
        if self.settings["autoBend"]:
            mul_node = node.createMulNode(
                [self.autoBendChain[0].ry, self.autoBendChain[0].rz],
                [self.sideBend_att, self.frontBend_att])

            mul_node.outputX >> self.ik1autoRot_lvl.rz
            mul_node.outputY >> self.ik1autoRot_lvl.rx

            self.ikHandleAutoBend = primitive.addIkHandle(
                self.autoBend_ctl, self.getName("ikHandleAutoBend"),
                self.autoBendChain, "ikSCsolver")

        # Tangent position ---------------------------------
        # common part
        d = vector.getDistance(self.guide.apos[0], self.guide.apos[-1])
        dist_node = node.createDistNode(self.ik0_ctl, self.ik1_ctl)
        rootWorld_node = node.createDecomposeMatrixNode(
            self.root.attr("worldMatrix"))

        div_node = node.createDivNode(dist_node + ".distance",
                                      rootWorld_node + ".outputScaleX")

        div_node = node.createDivNode(div_node + ".outputX", d)

        # tan0
        mul_node = node.createMulNode(self.tan0_att,
                                      self.tan0_npo.getAttr("ty"))

        res_node = node.createMulNode(mul_node + ".outputX",
                                      div_node + ".outputX")

        pm.connectAttr(res_node + ".outputX", self.tan0_npo.attr("ty"))

        # tan1
        mul_node = node.createMulNode(self.tan1_att,
                                      self.tan1_npo.getAttr("ty"))

        res_node = node.createMulNode(mul_node + ".outputX",
                                      div_node + ".outputX")

        pm.connectAttr(res_node + ".outputX", self.tan1_npo.attr("ty"))

        # Tangent Mid --------------------------------------
        if self.settings["centralTangent"]:
            tanIntMat = applyop.gear_intmatrix_op(
                self.tan0_npo.attr("worldMatrix"),
                self.tan1_npo.attr("worldMatrix"), .5)

            applyop.gear_mulmatrix_op(
                tanIntMat.attr("output"),
                self.tan_npo.attr("parentInverseMatrix[0]"), self.tan_npo)

            pm.connectAttr(self.tan_ctl.attr("translate"),
                           self.tan0_off.attr("translate"))

            pm.connectAttr(self.tan_ctl.attr("translate"),
                           self.tan1_off.attr("translate"))

        # Curves -------------------------------------------
        op = applyop.gear_curveslide2_op(self.slv_crv, self.mst_crv, 0, 1.5,
                                         .5, .5)

        pm.connectAttr(self.position_att, op + ".position")
        pm.connectAttr(self.maxstretch_att, op + ".maxstretch")
        pm.connectAttr(self.maxsquash_att, op + ".maxsquash")
        pm.connectAttr(self.softness_att, op + ".softness")

        # Volume driver ------------------------------------
        crv_node = node.createCurveInfoNode(self.slv_crv)

        # Division -----------------------------------------
        for i in range(self.settings["division"]):

            # References
            u = i / (self.settings["division"] - 1.0)
            if i == 0:  # we add extra 10% to the first vertebra
                u = (1.0 / (self.settings["division"] - 1.0)) / 10

            cns = applyop.pathCns(self.div_cns[i], self.slv_crv, False, u,
                                  True)

            cns.setAttr("frontAxis", 1)  # front axis is 'Y'
            cns.setAttr("upAxis", 0)  # front axis is 'X'

            # Roll
            intMatrix = applyop.gear_intmatrix_op(
                self.ik0_ctl + ".worldMatrix", self.ik1_ctl + ".worldMatrix",
                u)

            dm_node = node.createDecomposeMatrixNode(intMatrix + ".output")
            pm.connectAttr(dm_node + ".outputRotate",
                           self.twister[i].attr("rotate"))

            pm.parentConstraint(self.twister[i],
                                self.ref_twist[i],
                                maintainOffset=True)

            pm.connectAttr(self.ref_twist[i] + ".translate",
                           cns + ".worldUpVector")

            # compensate scale reference
            div_node = node.createDivNode([1, 1, 1], [
                rootWorld_node + ".outputScaleX", rootWorld_node +
                ".outputScaleY", rootWorld_node + ".outputScaleZ"
            ])

            # Squash n Stretch
            op = applyop.gear_squashstretch2_op(self.scl_transforms[i],
                                                self.root,
                                                pm.arclen(self.slv_crv), "y",
                                                div_node + ".output")

            pm.connectAttr(self.volume_att, op + ".blend")
            pm.connectAttr(crv_node + ".arcLength", op + ".driver")
            pm.connectAttr(self.st_att[i], op + ".stretch")
            pm.connectAttr(self.sq_att[i], op + ".squash")

            # Controlers
            if i == 0:
                mulmat_node = applyop.gear_mulmatrix_op(
                    self.div_cns[i].attr("worldMatrix"),
                    self.root.attr("worldInverseMatrix"))

                dm_node = node.createDecomposeMatrixNode(mulmat_node +
                                                         ".output")

                pm.connectAttr(dm_node + ".outputTranslate",
                               self.fk_npo[i].attr("t"))

            else:
                mulmat_node = applyop.gear_mulmatrix_op(
                    self.div_cns[i].attr("worldMatrix"),
                    self.div_cns[i - 1].attr("worldInverseMatrix"))

                dm_node = node.createDecomposeMatrixNode(mulmat_node +
                                                         ".output")

                mul_node = node.createMulNode(div_node + ".output",
                                              dm_node + ".outputTranslate")

                pm.connectAttr(mul_node + ".output", self.fk_npo[i].attr("t"))

            pm.connectAttr(dm_node + ".outputRotate", self.fk_npo[i].attr("r"))

            # Orientation Lock
            if i == 0:
                dm_node = node.createDecomposeMatrixNode(self.ik0_ctl +
                                                         ".worldMatrix")

                blend_node = node.createBlendNode(
                    [dm_node + ".outputRotate%s" % s for s in "XYZ"],
                    [cns + ".rotate%s" % s for s in "XYZ"], self.lock_ori0_att)

                self.div_cns[i].attr("rotate").disconnect()

                pm.connectAttr(blend_node + ".output",
                               self.div_cns[i] + ".rotate")

            elif i == self.settings["division"] - 1:
                dm_node = node.createDecomposeMatrixNode(self.ik1_ctl +
                                                         ".worldMatrix")

                blend_node = node.createBlendNode(
                    [dm_node + ".outputRotate%s" % s for s in "XYZ"],
                    [cns + ".rotate%s" % s for s in "XYZ"], self.lock_ori1_att)

                self.div_cns[i].attr("rotate").disconnect()
                pm.connectAttr(blend_node + ".output",
                               self.div_cns[i] + ".rotate")

        # Connections (Hooks) ------------------------------
        pm.parentConstraint(self.hip_lvl, self.cnx0)
        pm.scaleConstraint(self.hip_lvl, self.cnx0)
        pm.parentConstraint(self.scl_transforms[-1], self.cnx1)
        pm.scaleConstraint(self.scl_transforms[-1], self.cnx1)
示例#5
0
    def addOperators(self):
        """Create operators and set the relations for the component rig

        Apply operators, constraints, expressions to the hierarchy.
        In order to keep the code clean and easier to debug,
        we shouldn't create any new object in this method.

        """
        # Tangent position ---------------------------------
        # common part
        d = vector.getDistance(self.guide.pos["root"], self.guide.pos["neck"])
        dist_node = node.createDistNode(self.root, self.ik_ctl)
        rootWorld_node = node.createDecomposeMatrixNode(
            self.root.attr("worldMatrix"))
        div_node = node.createDivNode(dist_node + ".distance",
                                      rootWorld_node + ".outputScaleX")
        div_node = node.createDivNode(div_node + ".outputX", d)

        # tan0
        mul_node = node.createMulNode(self.tan0_att,
                                      self.tan0_loc.getAttr("ty"))
        res_node = node.createMulNode(mul_node + ".outputX",
                                      div_node + ".outputX")
        pm.connectAttr(res_node + ".outputX", self.tan0_loc + ".ty")

        # tan1
        mul_node = node.createMulNode(self.tan1_att,
                                      self.tan1_loc.getAttr("ty"))
        res_node = node.createMulNode(mul_node + ".outputX",
                                      div_node + ".outputX")
        pm.connectAttr(res_node + ".outputX", self.tan1_loc.attr("ty"))

        # Curves -------------------------------------------
        op = applyop.gear_curveslide2_op(self.slv_crv, self.mst_crv, 0, 1.5,
                                         0.5, 0.5)
        pm.connectAttr(self.maxstretch_att, op + ".maxstretch")
        pm.connectAttr(self.maxsquash_att, op + ".maxsquash")
        pm.connectAttr(self.softness_att, op + ".softness")

        # Volume driver ------------------------------------
        crv_node = node.createCurveInfoNode(self.slv_crv)

        # Division -----------------------------------------
        for i in range(self.divisions):

            # References
            u = i / (self.divisions - 1.0)

            cns = applyop.pathCns(self.div_cns[i], self.slv_crv, False, u,
                                  True)
            cns.setAttr("frontAxis", 1)  # front axis is 'Y'
            cns.setAttr("upAxis", 2)  # front axis is 'Z'

            # Roll
            intMatrix = applyop.gear_intmatrix_op(
                self.intMRef + ".worldMatrix", self.ik_ctl + ".worldMatrix", u)
            dm_node = node.createDecomposeMatrixNode(intMatrix + ".output")
            pm.connectAttr(dm_node + ".outputRotate",
                           self.twister[i].attr("rotate"))

            pm.parentConstraint(self.twister[i],
                                self.ref_twist[i],
                                maintainOffset=True)

            pm.connectAttr(self.ref_twist[i] + ".translate",
                           cns + ".worldUpVector")

            # Squash n Stretch
            op = applyop.gear_squashstretch2_op(self.fk_npo[i], self.root,
                                                pm.arclen(self.slv_crv), "y")

            pm.connectAttr(self.volume_att, op + ".blend")
            pm.connectAttr(crv_node + ".arcLength", op + ".driver")
            pm.connectAttr(self.st_att[i], op + ".stretch")
            pm.connectAttr(self.sq_att[i], op + ".squash")
            op.setAttr("driver_min", 0.1)

            # scl compas
            if i != 0:
                div_node = node.createDivNode(
                    [1, 1, 1],
                    [
                        self.fk_npo[i - 1] + ".sx",
                        self.fk_npo[i - 1] + ".sy",
                        self.fk_npo[i - 1] + ".sz",
                    ],
                )

                pm.connectAttr(div_node + ".output",
                               self.scl_npo[i] + ".scale")

            # Controlers
            if i == 0:
                mulmat_node = applyop.gear_mulmatrix_op(
                    self.div_cns[i].attr("worldMatrix"),
                    self.root.attr("worldInverseMatrix"),
                )
            else:
                mulmat_node = applyop.gear_mulmatrix_op(
                    self.div_cns[i].attr("worldMatrix"),
                    self.div_cns[i - 1].attr("worldInverseMatrix"),
                )

            dm_node = node.createDecomposeMatrixNode(mulmat_node + ".output")
            pm.connectAttr(dm_node + ".outputTranslate",
                           self.fk_npo[i].attr("t"))
            pm.connectAttr(dm_node + ".outputRotate", self.fk_npo[i].attr("r"))

            # Orientation Lock
            if i == self.divisions - 1:
                dm_node = node.createDecomposeMatrixNode(self.ik_ctl +
                                                         ".worldMatrix")
                blend_node = node.createBlendNode(
                    [dm_node + ".outputRotate%s" % s for s in "XYZ"],
                    [cns + ".rotate%s" % s for s in "XYZ"],
                    self.lock_ori_att,
                )
                self.div_cns[i].attr("rotate").disconnect()

                pm.connectAttr(blend_node + ".output",
                               self.div_cns[i] + ".rotate")

        # Head ---------------------------------------------
        self.fk_ctl[-1].addChild(self.head_cns)

        # scale compensation
        dm_node = node.createDecomposeMatrixNode(self.scl_npo[0] +
                                                 ".parentInverseMatrix")

        pm.connectAttr(dm_node + ".outputScale", self.scl_npo[0] + ".scale")
示例#6
0
    def addOperators(self):
        """Create operators and set the relations for the component rig

        Apply operators, constraints, expressions to the hierarchy.
        In order to keep the code clean and easier to debug,
        we shouldn't create any new object in this method.

        """
        # 1 bone chain Upv ref ==============================================
        self.ikHandleUpvRef = primitive.addIkHandle(
            self.root, self.getName("ikHandleArmChainUpvRef"),
            self.armChainUpvRef, "ikSCsolver")
        pm.pointConstraint(self.ik_ctl, self.ikHandleUpvRef)
        pm.parentConstraint(self.armChainUpvRef[0], self.upv_cns, mo=True)

        # Visibilities -------------------------------------
        # fk
        fkvis_node = node.createReverseNode(self.blend_att)

        for shp in self.fk0_ctl.getShapes():
            pm.connectAttr(fkvis_node + ".outputX", shp.attr("visibility"))
        for shp in self.fk1_ctl.getShapes():
            pm.connectAttr(fkvis_node + ".outputX", shp.attr("visibility"))
        for shp in self.fk2_ctl.getShapes():
            pm.connectAttr(fkvis_node + ".outputX", shp.attr("visibility"))

        # ik
        for shp in self.upv_ctl.getShapes():
            pm.connectAttr(self.blend_att, shp.attr("visibility"))
        for shp in self.ikcns_ctl.getShapes():
            pm.connectAttr(self.blend_att, shp.attr("visibility"))
        for shp in self.ik_ctl.getShapes():
            pm.connectAttr(self.blend_att, shp.attr("visibility"))
        for shp in self.line_ref.getShapes():
            pm.connectAttr(self.blend_att, shp.attr("visibility"))
        if self.settings["ikTR"]:
            for shp in self.ikRot_ctl.getShapes():
                pm.connectAttr(self.blend_att, shp.attr("visibility"))
        for shp in self.roll_ctl.getShapes():
            pm.connectAttr(self.blend_att, shp.attr("visibility"))

        # Controls ROT order -----------------------------------
        attribute.setRotOrder(self.fk0_ctl, "XZY")
        attribute.setRotOrder(self.fk1_ctl, "XYZ")
        attribute.setRotOrder(self.fk2_ctl, "YZX")
        attribute.setRotOrder(self.ik_ctl, "XYZ")

        # IK Solver -----------------------------------------
        out = [self.bone0, self.bone1, self.ctrn_loc, self.eff_loc]
        o_node = applyop.gear_ikfk2bone_op(out, self.root, self.ik_ref,
                                           self.upv_ctl, self.fk_ctl[0],
                                           self.fk_ctl[1], self.fk_ref,
                                           self.length0, self.length1,
                                           self.negate)

        # NOTE: Ideally we should not change hierarchy or move object after
        # object generation method. But is much easier this way since every
        # part is in the final and correct position
        # after the  ctrn_loc is in the correct position with the ikfk2bone op

        # point constrain tip reference
        pm.pointConstraint(self.ik_ctl, self.tip_ref, mo=False)

        # interpolate transform  mid point locator
        int_matrix = applyop.gear_intmatrix_op(
            self.armChainUpvRef[0].attr("worldMatrix"),
            self.tip_ref.attr("worldMatrix"), .5)
        applyop.gear_mulmatrix_op(
            int_matrix.attr("output"),
            self.interpolate_lvl.attr("parentInverseMatrix[0]"),
            self.interpolate_lvl)

        # match roll ctl npo to ctrn_loc current transform (so correct orient)
        transform.matchWorldTransform(self.ctrn_loc, self.roll_ctl_npo)

        # match roll ctl npo to interpolate transform current position
        pos = self.interpolate_lvl.getTranslation(space="world")
        self.roll_ctl_npo.setTranslation(pos, space="world")

        # parent constraint roll control npo to interpolate trans
        pm.parentConstraint(self.interpolate_lvl, self.roll_ctl_npo, mo=True)

        if self.settings["ikTR"]:
            # connect the control inputs
            outEff_dm = o_node.listConnections(c=True)[-1][1]

            inAttr = self.ikRot_npo.attr("translate")
            outEff_dm.attr("outputTranslate") >> inAttr

            outEff_dm.attr("outputScale") >> self.ikRot_npo.attr("scale")
            dm_node = node.createDecomposeMatrixNode(o_node.attr("outB"))
            dm_node.attr("outputRotate") >> self.ikRot_npo.attr("rotate")

            # rotation
            mulM_node = applyop.gear_mulmatrix_op(
                self.ikRot_ctl.attr("worldMatrix"),
                self.eff_loc.attr("parentInverseMatrix"))
            intM_node = applyop.gear_intmatrix_op(o_node.attr("outEff"),
                                                  mulM_node.attr("output"),
                                                  o_node.attr("blend"))
            dm_node = node.createDecomposeMatrixNode(intM_node.attr("output"))
            dm_node.attr("outputRotate") >> self.eff_loc.attr("rotate")
            transform.matchWorldTransform(self.fk2_ctl, self.ikRot_cns)

        # scale: this fix the scalin popping issue
        intM_node = applyop.gear_intmatrix_op(
            self.fk2_ctl.attr("worldMatrix"),
            self.ik_ctl_ref.attr("worldMatrix"), o_node.attr("blend"))
        mulM_node = applyop.gear_mulmatrix_op(
            intM_node.attr("output"), self.eff_loc.attr("parentInverseMatrix"))
        dm_node = node.createDecomposeMatrixNode(mulM_node.attr("output"))
        dm_node.attr("outputScale") >> self.eff_loc.attr("scale")

        pm.connectAttr(self.blend_att, o_node + ".blend")
        if self.negate:
            mulVal = -1
            rollMulVal = 1
        else:
            mulVal = 1
            rollMulVal = -1
        roll_m_node = node.createMulNode(self.roll_att, mulVal)
        roll_m_node2 = node.createMulNode(self.roll_ctl.attr("rx"), rollMulVal)
        node.createPlusMinusAverage1D(
            [roll_m_node.outputX, roll_m_node2.outputX],
            operation=1,
            output=o_node + ".roll")
        pm.connectAttr(self.scale_att, o_node + ".scaleA")
        pm.connectAttr(self.scale_att, o_node + ".scaleB")
        pm.connectAttr(self.maxstretch_att, o_node + ".maxstretch")
        pm.connectAttr(self.slide_att, o_node + ".slide")
        pm.connectAttr(self.softness_att, o_node + ".softness")
        pm.connectAttr(self.reverse_att, o_node + ".reverse")

        # Twist references ---------------------------------

        pm.pointConstraint(self.mid_ctl_twst_ref,
                           self.tws1_npo,
                           maintainOffset=False)
        pm.connectAttr(self.mid_ctl.scaleX, self.tws1_loc.scaleX)
        pm.connectAttr(self.mid_ctl.scaleX, self.tws1B_loc.scaleX)
        pm.orientConstraint(self.mid_ctl_twst_ref,
                            self.tws1_npo,
                            maintainOffset=False)
        applyop.oriCns(self.mid_ctl, self.tws1_rot, maintainOffset=False)
        applyop.oriCns(self.mid_ctl, self.tws1B_rot, maintainOffset=False)

        if self.negate:
            axis = "xz"
            axisb = "-xz"
        else:
            axis = "-xz"
            axisb = "xz"
        applyop.aimCns(self.tws1_loc,
                       self.root,
                       axis=axis,
                       wupType=4,
                       wupVector=[0, 0, 1],
                       wupObject=self.mid_ctl,
                       maintainOffset=False)

        applyop.aimCns(self.tws1B_loc,
                       self.eff_loc,
                       axis=axisb,
                       wupType=4,
                       wupVector=[0, 0, 1],
                       wupObject=self.mid_ctl,
                       maintainOffset=False)

        pm.pointConstraint(self.thick_ctl,
                           self.tws1B_loc,
                           maintainOffset=False)

        o_node = applyop.gear_mulmatrix_op(
            self.eff_loc.attr("worldMatrix"),
            self.root.attr("worldInverseMatrix"))
        dm_node = pm.createNode("decomposeMatrix")
        pm.connectAttr(o_node + ".output", dm_node + ".inputMatrix")
        pm.connectAttr(dm_node + ".outputTranslate",
                       self.tws2_npo.attr("translate"))

        dm_node = pm.createNode("decomposeMatrix")
        pm.connectAttr(o_node + ".output", dm_node + ".inputMatrix")
        pm.connectAttr(dm_node + ".outputRotate", self.tws2_npo.attr("rotate"))

        o_node = applyop.gear_mulmatrix_op(
            self.eff_loc.attr("worldMatrix"),
            self.tws2_rot.attr("parentInverseMatrix"))
        dm_node = pm.createNode("decomposeMatrix")
        pm.connectAttr(o_node + ".output", dm_node + ".inputMatrix")
        attribute.setRotOrder(self.tws2_rot, "XYZ")
        pm.connectAttr(dm_node + ".outputRotate", self.tws2_rot + ".rotate")

        self.tws0_rot.setAttr("sx", .001)
        self.tws2_rot.setAttr("sx", .001)

        add_node = node.createAddNode(self.roundness_att, .001)
        pm.connectAttr(add_node + ".output", self.tws1_rot.attr("sx"))
        pm.connectAttr(add_node + ".output", self.tws1B_rot.attr("sx"))

        pm.connectAttr(self.armpit_roll_att, self.tws0_rot + ".rotateX")

        # Roll Shoulder
        applyop.splineIK(self.getName("rollRef"),
                         self.rollRef,
                         parent=self.root,
                         cParent=self.bone0)

        # Volume -------------------------------------------
        distA_node = node.createDistNode(self.tws0_loc, self.tws1_loc)
        distB_node = node.createDistNode(self.tws1_loc, self.tws2_loc)
        add_node = node.createAddNode(distA_node + ".distance",
                                      distB_node + ".distance")
        div_node = node.createDivNode(add_node + ".output",
                                      self.root.attr("sx"))

        dm_node = pm.createNode("decomposeMatrix")
        pm.connectAttr(self.root.attr("worldMatrix"), dm_node + ".inputMatrix")

        div_node2 = node.createDivNode(div_node + ".outputX",
                                       dm_node + ".outputScaleX")
        self.volDriver_att = div_node2 + ".outputX"

        if self.settings["extraTweak"]:
            for tweak_ctl in self.tweak_ctl:
                for shp in tweak_ctl.getShapes():
                    pm.connectAttr(self.tweakVis_att, shp.attr("visibility"))

        # Divisions ----------------------------------------
        # at 0 or 1 the division will follow exactly the rotation of the
        # controler.. and we wont have this nice tangent + roll
        b_twist = False
        for i, div_cns in enumerate(self.div_cns):

            if self.settings["supportJoints"]:
                if i < (self.settings["div0"] + 1):
                    perc = i * .5 / (self.settings["div0"] + 1.0)
                elif i < (self.settings["div0"] + 2):
                    perc = .49
                elif i < (self.settings["div0"] + 3):
                    perc = .50
                elif i < (self.settings["div0"] + 4):
                    b_twist = True
                    perc = .51

                else:
                    perc = .5 + \
                        (i - self.settings["div0"] - 3.0) * .5 / \
                        (self.settings["div1"] + 1.0)
            else:
                if i < (self.settings["div0"] + 1):
                    perc = i * .5 / (self.settings["div0"] + 1.0)
                elif i < (self.settings["div0"] + 2):
                    b_twist = True
                    perc = .501
                else:
                    perc = .5 + \
                        (i - self.settings["div0"] - 1.0) * .5 / \
                        (self.settings["div1"] + 1.0)

            perc = max(.001, min(.990, perc))

            # mid twist distribution
            if b_twist:
                mid_twist = self.tws1B_rot
            else:
                mid_twist = self.tws1_rot

            # Roll
            if self.negate:
                o_node = applyop.gear_rollsplinekine_op(
                    div_cns, [self.tws2_rot, mid_twist, self.tws0_rot],
                    1.0 - perc, 40)
            else:
                o_node = applyop.gear_rollsplinekine_op(
                    div_cns, [self.tws0_rot, mid_twist, self.tws2_rot], perc,
                    40)

            pm.connectAttr(self.resample_att, o_node + ".resample")
            pm.connectAttr(self.absolute_att, o_node + ".absolute")

            # Squash n Stretch
            o_node = applyop.gear_squashstretch2_op(
                div_cns, None, pm.getAttr(self.volDriver_att), "x")
            pm.connectAttr(self.volume_att, o_node + ".blend")
            pm.connectAttr(self.volDriver_att, o_node + ".driver")
            pm.connectAttr(self.st_att[i], o_node + ".stretch")
            pm.connectAttr(self.sq_att[i], o_node + ".squash")

        # match IK/FK ref
        pm.parentConstraint(self.bone0, self.match_fk0_off, mo=True)
        pm.parentConstraint(self.bone1, self.match_fk1_off, mo=True)
        if self.settings["ikTR"]:
            transform.matchWorldTransform(self.ikRot_ctl, self.match_ikRot)
            transform.matchWorldTransform(self.fk_ctl[2], self.match_fk2)

        # connect_reader
        pm.parentConstraint(self.bone0, self.readerA, mo=True)
        pm.parentConstraint(self.bone1, self.readerB, mo=True)

        # connect auto thickness
        if self.negate and not self.settings["mirrorMid"]:
            d_val = 180 / self.length1
        else:
            d_val = -180 / self.length1
        div_thick_node = node.createDivNode(self.elbow_thickness_att, d_val)
        node.createMulNode(div_thick_node.outputX, self.readerB.ry,
                           self.thick_lvl.tx)

        return
    def addFkOperator(self, i, rootWorld_node, crv_node):

        if i == 0 and self.settings["isSplitHip"]:
            s = self.fk_hip_ctl
            d = self.fk_local_npo[0],
            # maintainOffset, skipRotate, skipTranslate
            _ = pm.parentConstraint(s, d, mo=True, sr=("x", "y", "z"), st=())

            s = self.ik_global_out[0]
            d = self.hip_fk_local_in,
            # maintainOffset, skipRotate, skipTranslate
            pm.parentConstraint(s, d, mo=True)

        # break FK hierarchical orient
        if i not in [len(self.guide.apos), 0]:
            s = self.fk_ctl[i - 1]
            s2 = self.fk_npo[i]
            d = self.fk_local_npo[i]

            mulmat_node = applyop.gear_mulmatrix_op(s2.attr("matrix"), s.attr("matrix"))
            mulmat_node2 = applyop.gear_mulmatrix_op(mulmat_node.attr("output"), s2.attr("inverseMatrix"))

            dm_node = node.createDecomposeMatrixNode(mulmat_node2 + ".output")
            pm.connectAttr(dm_node + ".outputTranslate", d.attr("t"))

            check_list = (pm.Attribute, unicode, str)  # noqa
            cond = pm.createNode("condition")
            pm.setAttr(cond + ".operation", 4)  # greater
            attribute.connectSet(self.fk_collapsed_att, cond + ".secondTerm", check_list)
            attribute.connectSet(dm_node + ".outputRotate", cond + ".colorIfTrue", check_list)
            pm.setAttr(cond + ".colorIfFalseR", 0.)
            pm.setAttr(cond + ".colorIfFalseG", 0.)
            pm.setAttr(cond + ".colorIfFalseB", 0.)
            pm.connectAttr(cond + ".outColor", d.attr("r"))

        # References
        if i == 0:  # we add extra 10% to the first position
            u = (1.0 / (len(self.guide.apos) - 1.0)) / 1000
        else:
            u = getCurveUAtPoint(self.slv_crv, self.guide.apos[i])

        tmp_div_npo_transform = getTransform(self.div_cns_npo[i])  # to fix mismatch before/after later
        cns = applyop.pathCns(self.div_cns[i], self.slv_crv, False, u, True)
        cns.setAttr("frontAxis", 1)  # front axis is 'Y'
        cns.setAttr("upAxis", 0)  # front axis is 'X'

        # Roll
        # choose ik_ctls
        for _i, uv in enumerate(self.ik_uv_param):
            if u < uv:

                ik_a = self.ik_ctl[_i - 1]
                ik_b = self.ik_ctl[_i]

                if self.settings["isSplitHip"] and i == 0:
                    u = (i + 1) / (len(self.guide.apos) - 1.0)
                    ratio = u / uv * .5

                else:
                    ratio = u / uv

                break

        else:
            ik_a = self.ik_ctl[-2]
            ik_b = self.ik_ctl[-1]
            ratio = 1.

        intMatrix = applyop.gear_intmatrix_op(
            ik_a + ".worldMatrix",
            ik_b + ".worldMatrix",
            ratio)

        dm_node = node.createDecomposeMatrixNode(intMatrix + ".output")
        pm.connectAttr(dm_node + ".outputRotate", self.twister[i].attr("rotate"))
        pm.parentConstraint(self.twister[i], self.ref_twist[i], maintainOffset=True)

        pm.connectAttr(self.ref_twist[i] + ".translate", cns + ".worldUpVector")
        self.div_cns_npo[i].setMatrix(tmp_div_npo_transform, worldSpace=True)

        # compensate scale reference
        div_node = node.createDivNode(
            [1, 1, 1],
            [rootWorld_node + ".outputScaleX",
             rootWorld_node + ".outputScaleY",
             rootWorld_node + ".outputScaleZ"])

        # Squash n Stretch
        op = applyop.gear_squashstretch2_op(self.scl_transforms[i],
                                            self.root,
                                            pm.arclen(self.slv_crv),
                                            "y",
                                            div_node + ".output")

        pm.connectAttr(self.volume_att, op + ".blend")
        pm.connectAttr(crv_node + ".arcLength", op + ".driver")
        pm.connectAttr(self.st_att[i], op + ".stretch")
        pm.connectAttr(self.sq_att[i], op + ".squash")

        # Controlers
        tmp_local_npo_transform = getTransform(self.fk_local_npo[i])  # to fix mismatch before/after later
        if i == 0:
            mulmat_node = applyop.gear_mulmatrix_op(
                self.div_cns_npo[i].attr("worldMatrix"),
                self.root.attr("worldInverseMatrix"))

            dm_node = node.createDecomposeMatrixNode(mulmat_node + ".output")
            pm.connectAttr(dm_node + ".outputTranslate", self.fk_npo[i].attr("t"))

        else:
            mulmat_node = applyop.gear_mulmatrix_op(
                self.div_cns_npo[i].attr("worldMatrix"),
                self.div_cns_npo[i - 1].attr("worldInverseMatrix"))

            dm_node = node.createDecomposeMatrixNode(mulmat_node + ".output")
            mul_node = node.createMulNode(div_node + ".output", dm_node + ".outputTranslate")
            pm.connectAttr(mul_node + ".output", self.fk_npo[i].attr("t"))

        pm.connectAttr(dm_node + ".outputRotate", self.fk_npo[i].attr("r"))
        self.addOperatorsOrientationLock(i, cns)
        self.fk_local_npo[i].setMatrix(tmp_local_npo_transform, worldSpace=True)

        # References
        if i < (len(self.fk_ctl) - 1):
            aim = pm.aimConstraint(self.div_cns_npo[i + 1], self.div_cns_npo[i], maintainOffset=False)
            pm.setAttr(aim + ".aimVectorX", 0)
            pm.setAttr(aim + ".aimVectorY", 1)
            pm.setAttr(aim + ".aimVectorZ", 0)
            pm.setAttr(aim + ".upVectorX", 0)
            pm.setAttr(aim + ".upVectorY", 1)
            pm.setAttr(aim + ".upVectorZ", 0)
示例#8
0
    def addOperators(self):
        """Create operators and set the relations for the component rig

        Apply operators, constraints, expressions to the hierarchy.
        In order to keep the code clean and easier to debug,
        we shouldn't create any new object in this method.

        """
        # 1 bone chain Upv ref ==============================================
        self.ikHandleUpvRef = primitive.addIkHandle(
            self.root, self.getName("ikHandleArmChainUpvRef"),
            self.armChainUpvRef, "ikSCsolver")
        pm.pointConstraint(self.ik_ctl, self.ikHandleUpvRef)
        pm.parentConstraint(self.armChainUpvRef[0], self.upv_cns, mo=True)

        # Visibilities -------------------------------------
        # fk
        fkvis_node = node.createReverseNode(self.blend_att)

        for shp in self.fk0_ctl.getShapes():
            pm.connectAttr(fkvis_node + ".outputX", shp.attr("visibility"))
        for shp in self.fk1_ctl.getShapes():
            pm.connectAttr(fkvis_node + ".outputX", shp.attr("visibility"))
        for shp in self.fk2_ctl.getShapes():
            pm.connectAttr(fkvis_node + ".outputX", shp.attr("visibility"))

        # ik
        for shp in self.upv_ctl.getShapes():
            pm.connectAttr(self.blend_att, shp.attr("visibility"))
        for shp in self.ikcns_ctl.getShapes():
            pm.connectAttr(self.blend_att, shp.attr("visibility"))
        for shp in self.ik_ctl.getShapes():
            pm.connectAttr(self.blend_att, shp.attr("visibility"))
        for shp in self.line_ref.getShapes():
            pm.connectAttr(self.blend_att, shp.attr("visibility"))
        if self.settings["ikTR"]:
            for shp in self.ikRot_ctl.getShapes():
                pm.connectAttr(self.blend_att, shp.attr("visibility"))

        # Controls ROT order -----------------------------------
        attribute.setRotOrder(self.fk0_ctl, "XZY")
        attribute.setRotOrder(self.fk1_ctl, "XYZ")
        attribute.setRotOrder(self.fk2_ctl, "YZX")
        attribute.setRotOrder(self.ik_ctl, "XYZ")

        # IK Solver -----------------------------------------
        out = [self.bone0, self.bone1, self.ctrn_loc, self.eff_loc]
        o_node = applyop.gear_ikfk2bone_op(out, self.root, self.ik_ref,
                                           self.upv_ctl, self.fk_ctl[0],
                                           self.fk_ctl[1], self.fk_ref,
                                           self.length0, self.length1,
                                           self.negate)

        if self.settings["ikTR"]:
            # connect the control inputs
            outEff_dm = o_node.listConnections(c=True)[-1][1]

            inAttr = self.ikRot_npo.attr("translate")
            outEff_dm.attr("outputTranslate") >> inAttr

            outEff_dm.attr("outputScale") >> self.ikRot_npo.attr("scale")
            dm_node = node.createDecomposeMatrixNode(o_node.attr("outB"))
            dm_node.attr("outputRotate") >> self.ikRot_npo.attr("rotate")

            # rotation
            mulM_node = applyop.gear_mulmatrix_op(
                self.ikRot_ctl.attr("worldMatrix"),
                self.eff_loc.attr("parentInverseMatrix"))
            intM_node = applyop.gear_intmatrix_op(o_node.attr("outEff"),
                                                  mulM_node.attr("output"),
                                                  o_node.attr("blend"))
            dm_node = node.createDecomposeMatrixNode(intM_node.attr("output"))
            dm_node.attr("outputRotate") >> self.eff_loc.attr("rotate")
            transform.matchWorldTransform(self.fk2_ctl, self.ikRot_cns)

        # scale: this fix the scalin popping issue
        intM_node = applyop.gear_intmatrix_op(
            self.fk2_ctl.attr("worldMatrix"),
            self.ik_ctl_ref.attr("worldMatrix"), o_node.attr("blend"))
        mulM_node = applyop.gear_mulmatrix_op(
            intM_node.attr("output"), self.eff_loc.attr("parentInverseMatrix"))
        dm_node = node.createDecomposeMatrixNode(mulM_node.attr("output"))
        dm_node.attr("outputScale") >> self.eff_loc.attr("scale")

        pm.connectAttr(self.blend_att, o_node + ".blend")
        if self.negate:
            mulVal = -1
        else:
            mulVal = 1
        node.createMulNode(self.roll_att, mulVal, o_node + ".roll")
        pm.connectAttr(self.scale_att, o_node + ".scaleA")
        pm.connectAttr(self.scale_att, o_node + ".scaleB")
        pm.connectAttr(self.maxstretch_att, o_node + ".maxstretch")
        pm.connectAttr(self.slide_att, o_node + ".slide")
        pm.connectAttr(self.softness_att, o_node + ".softness")
        pm.connectAttr(self.reverse_att, o_node + ".reverse")

        # Twist references ---------------------------------

        pm.pointConstraint(self.mid_ctl_twst_ref,
                           self.tws1_npo,
                           maintainOffset=False)
        pm.connectAttr(self.mid_ctl.scaleX, self.tws1_loc.scaleX)
        pm.orientConstraint(self.mid_ctl_twst_ref,
                            self.tws1_npo,
                            maintainOffset=False)

        o_node = applyop.gear_mulmatrix_op(
            self.eff_loc.attr("worldMatrix"),
            self.root.attr("worldInverseMatrix"))
        dm_node = pm.createNode("decomposeMatrix")
        pm.connectAttr(o_node + ".output", dm_node + ".inputMatrix")
        pm.connectAttr(dm_node + ".outputTranslate",
                       self.tws2_npo.attr("translate"))

        dm_node = pm.createNode("decomposeMatrix")
        pm.connectAttr(o_node + ".output", dm_node + ".inputMatrix")
        pm.connectAttr(dm_node + ".outputRotate", self.tws2_npo.attr("rotate"))

        o_node = applyop.gear_mulmatrix_op(
            self.eff_loc.attr("worldMatrix"),
            self.tws2_rot.attr("parentInverseMatrix"))
        dm_node = pm.createNode("decomposeMatrix")
        pm.connectAttr(o_node + ".output", dm_node + ".inputMatrix")
        attribute.setRotOrder(self.tws2_rot, "XYZ")
        pm.connectAttr(dm_node + ".outputRotate", self.tws2_rot + ".rotate")

        self.tws0_rot.setAttr("sx", .001)
        self.tws2_rot.setAttr("sx", .001)

        add_node = node.createAddNode(self.roundness_att, .001)
        pm.connectAttr(add_node + ".output", self.tws1_rot.attr("sx"))

        pm.connectAttr(self.armpit_roll_att, self.tws0_rot + ".rotateX")

        # Roll Shoulder
        applyop.splineIK(self.getName("rollRef"),
                         self.rollRef,
                         parent=self.root,
                         cParent=self.bone0)

        # Volume -------------------------------------------
        distA_node = node.createDistNode(self.tws0_loc, self.tws1_loc)
        distB_node = node.createDistNode(self.tws1_loc, self.tws2_loc)
        add_node = node.createAddNode(distA_node + ".distance",
                                      distB_node + ".distance")
        div_node = node.createDivNode(add_node + ".output",
                                      self.root.attr("sx"))

        dm_node = pm.createNode("decomposeMatrix")
        pm.connectAttr(self.root.attr("worldMatrix"), dm_node + ".inputMatrix")

        div_node2 = node.createDivNode(div_node + ".outputX",
                                       dm_node + ".outputScaleX")
        self.volDriver_att = div_node2 + ".outputX"

        if self.settings["extraTweak"]:
            for tweak_ctl in self.tweak_ctl:
                for shp in tweak_ctl.getShapes():
                    pm.connectAttr(self.tweakVis_att, shp.attr("visibility"))

        # Divisions ----------------------------------------
        # at 0 or 1 the division will follow exactly the rotation of the
        # controler.. and we wont have this nice tangent + roll
        for i, div_cns in enumerate(self.div_cns):

            if self.settings["supportJoints"]:
                if i < (self.settings["div0"] + 1):
                    perc = i * .5 / (self.settings["div0"] + 1.0)
                elif i < (self.settings["div0"] + 2):
                    perc = .49
                elif i < (self.settings["div0"] + 3):
                    perc = .50
                elif i < (self.settings["div0"] + 4):
                    perc = .51

                else:
                    perc = .5 + \
                        (i - self.settings["div0"] - 3.0) * .5 / \
                        (self.settings["div1"] + 1.0)
            else:
                if i < (self.settings["div0"] + 1):
                    perc = i * .5 / (self.settings["div0"] + 1.0)
                elif i < (self.settings["div0"] + 2):
                    perc = .501
                else:
                    perc = .5 + \
                        (i - self.settings["div0"] - 1.0) * .5 / \
                        (self.settings["div1"] + 1.0)

            perc = max(.001, min(.990, perc))

            # Roll
            if self.negate:
                o_node = applyop.gear_rollsplinekine_op(
                    div_cns, [self.tws2_rot, self.tws1_rot, self.tws0_rot],
                    1.0 - perc, 40)
            else:
                o_node = applyop.gear_rollsplinekine_op(
                    div_cns, [self.tws0_rot, self.tws1_rot, self.tws2_rot],
                    perc, 40)

            pm.connectAttr(self.resample_att, o_node + ".resample")
            pm.connectAttr(self.absolute_att, o_node + ".absolute")

            # Squash n Stretch
            o_node = applyop.gear_squashstretch2_op(
                div_cns, None, pm.getAttr(self.volDriver_att), "x")
            pm.connectAttr(self.volume_att, o_node + ".blend")
            pm.connectAttr(self.volDriver_att, o_node + ".driver")
            pm.connectAttr(self.st_att[i], o_node + ".stretch")
            pm.connectAttr(self.sq_att[i], o_node + ".squash")

        # match IK/FK ref
        pm.parentConstraint(self.bone0, self.match_fk0_off, mo=True)
        pm.parentConstraint(self.bone1, self.match_fk1_off, mo=True)
        if self.settings["ikTR"]:
            transform.matchWorldTransform(self.ikRot_ctl, self.match_ikRot)
            transform.matchWorldTransform(self.fk_ctl[2], self.match_fk2)

        return
示例#9
0
    def addOperators(self):
        """Create operators and set the relations for the component rig

        Apply operators, constraints, expressions to the hierarchy.
        In order to keep the code clean and easier to debug,
        we shouldn't create any new object in this method.

        """

        # Curves -------------------------------------------
        op = applyop.gear_curveslide2_op(
            self.slv_crv, self.mst_crv, 0, 1.5, .5, .5)

        pm.connectAttr(self.position_att, op + ".position")
        pm.connectAttr(self.lenght_att, op + ".maxstretch")

        op = applyop.gear_curveslide2_op(
            self.slv_upv_crv, self.upv_crv, 0, 1.5, .5, .5)

        pm.connectAttr(self.position_att, op + ".position")
        pm.connectAttr(self.lenght_att, op + ".maxstretch")

        for tang in self.tangentsCtl:
            for shp in tang.getShapes():
                pm.connectAttr(self.tangentsVis_att, shp.attr("visibility"))

        for twnpo, fkctl in zip(self.tweak_npo, self.fk_ctl):
            intMatrix = applyop.gear_intmatrix_op(
                fkctl.attr("worldMatrix"),
                fkctl.getParent().attr("worldMatrix"),
                .5)

            applyop.gear_mulmatrix_op(intMatrix.attr("output"),
                                      twnpo.attr("parentInverseMatrix[0]"),
                                      twnpo)

        dm_node_scl = node.createDecomposeMatrixNode(self.root.worldMatrix)
        if self.settings["keepLength"]:
            arclen_node = pm.arclen(self.slv_crv, ch=True)
            alAttr = pm.getAttr(arclen_node + ".arcLength")

            pm.addAttr(self.slv_crv, ln="length_ratio", k=True, w=True)
            node.createDivNode(arclen_node.arcLength,
                               alAttr,
                               self.slv_crv.length_ratio)

            div_node_scl = node.createDivNode(self.slv_crv.length_ratio,
                                              dm_node_scl.outputScaleX)

        step = 1.000 / (self.def_number - 1)
        u = 0.000
        for i in range(self.def_number):
            mult_node = node.createMulNode(u, self.lenght_att)
            cnsUpv = applyop.pathCns(self.upv_cns[i],
                                     self.slv_upv_crv,
                                     cnsType=False,
                                     u=u,
                                     tangent=False)
            pm.connectAttr(mult_node.outputX, cnsUpv.uValue)

            cns = applyop.pathCns(
                self.div_cns[i], self.slv_crv, False, u, True)
            pm.connectAttr(mult_node.outputX, cns.uValue)

            # Connectiong the scale for scaling compensation
            for axis, AX in zip("xyz", "XYZ"):
                pm.connectAttr(dm_node_scl.attr("outputScale{}".format(AX)),
                               self.div_cns[i].attr("s{}".format(axis)))

            if self.settings["keepLength"]:

                div_node2 = node.createDivNode(u, div_node_scl.outputX)

                cond_node = node.createConditionNode(div_node2.input1X,
                                                     div_node2.outputX,
                                                     4,
                                                     div_node2.input1X,
                                                     div_node2.outputX)

                # pm.connectAttr(cond_node + ".outColorR",
                #                cnsUpv + ".uValue")
                # pm.connectAttr(cond_node + ".outColorR",
                #                cns + ".uValue")
                pm.connectAttr(cond_node + ".outColorR",
                               mult_node + ".input1X", f=True)

            # Connect the scaling for self.Extra_tweak_npo
            et_npo = self.Extra_tweak_npo[i]
            pm.connectAttr(self.spin_att, et_npo + ".rz")

            base_node = node.createMulNode(self.baseSize_att, 1.00000 - u, output=None)
            tip_node = node.createMulNode(self.tipSize_att, u, output=None)
            sum_node = node.createPlusMinusAverage1D([base_node.outputX, tip_node.outputX])
            # print et_npo
            pm.connectAttr(sum_node.output1D, et_npo.scaleX, f=True)
            pm.connectAttr(sum_node.output1D, et_npo.scaleY, f=True)
            pm.connectAttr(sum_node.output1D, et_npo.scaleZ, f=True)

            cns.setAttr("worldUpType", 1)
            cns.setAttr("frontAxis", 0)
            cns.setAttr("upAxis", 1)

            pm.connectAttr(self.upv_cns[i].attr("worldMatrix[0]"),
                           cns.attr("worldUpMatrix"))
            u += step

        for et in self.Extra_tweak_ctl:
            for shp in et.getShapes():
                pm.connectAttr(self.tweakVis_att, shp.attr("visibility"))

        if self.settings["keepLength"]:
            # add the safty distance offset
            self.tweakTip_npo.attr("tx").set(self.off_dist)
            # connect vis line ref
            for shp in self.line_ref.getShapes():
                pm.connectAttr(self.ikVis_att, shp.attr("visibility"))

        for ctl in self.tweak_ctl:
            for shp in ctl.getShapes():
                pm.connectAttr(self.ikVis_att, shp.attr("visibility"))
        for ctl in self.fk_ctl:
            for shp in ctl.getShapes():
                pm.connectAttr(self.fkVis_att, shp.attr("visibility"))
示例#10
0
    def addFkOperator(self, i, rootWorld_node, crv_node):

        fk_local_npo_xfoms = []
        if i not in [len(self.guide.apos), 0]:
            xform = getTransform(self.fk_local_npo[i])
            fk_local_npo_xfoms.append(xform)

        # break FK hierarchical orient
        if i not in [len(self.guide.apos), 0]:
            s = self.fk_ctl[i - 1]
            s2 = self.fk_npo[i]
            d = self.fk_local_npo[i]

            mulmat_node = applyop.gear_mulmatrix_op(s2.attr("matrix"), s.attr("matrix"))
            mulmat_node2 = applyop.gear_mulmatrix_op(mulmat_node.attr("output"), s2.attr("inverseMatrix"))

            dm_node = node.createDecomposeMatrixNode(mulmat_node2 + ".output")
            pm.connectAttr(dm_node + ".outputTranslate", d.attr("t"))

            check_list = (pm.Attribute, unicode, str)  # noqa
            cond = pm.createNode("condition")
            pm.setAttr(cond + ".operation", 4)  # greater
            attribute.connectSet(self.fk_collapsed_att, cond + ".secondTerm", check_list)
            attribute.connectSet(dm_node + ".outputRotate", cond + ".colorIfTrue", check_list)
            pm.setAttr(cond + ".colorIfFalseR", 0.)
            pm.setAttr(cond + ".colorIfFalseG", 0.)
            pm.setAttr(cond + ".colorIfFalseB", 0.)
            pm.connectAttr(cond + ".outColor", d.attr("r"))

        # References
        if i == 0:  # we add extra 10% to the first position
            u = (1.0 / (len(self.guide.apos) - 1.0)) / 10000
        else:
            u = getCurveUAtPoint(self.slv_crv, self.guide.apos[i])

        tmp_div_npo_transform = getTransform(self.div_cns_npo[i])  # to fix mismatch before/after later
        cns = applyop.pathCns(self.div_cns[i], self.slv_crv, False, u, True)
        cns.setAttr("frontAxis", 1)  # front axis is 'Y'
        cns.setAttr("upAxis", 0)  # front axis is 'X'

        # Roll
        # choose ik_ctls
        for _i, uv in enumerate(self.ik_uv_param):
            if u < uv:

                ik_a = self.ik_ctl[_i - 1]
                ik_b = self.ik_ctl[_i]

                roll_a = self.ik_decompose_rot[_i - 1]
                roll_b = self.ik_decompose_rot[_i]

                ratio = (uv - u) * (self.settings["ikNb"] - 1)
                break

        else:
            ik_a = self.ik_ctl[-2]
            ik_b = self.ik_ctl[-1]

            roll_a = self.ik_decompose_rot[-2]
            roll_b = self.ik_decompose_rot[-1]

            ratio = 1.

        intMatrix = applyop.gear_intmatrix_op(
            ik_a + ".worldMatrix",
            ik_b + ".worldMatrix",
            ratio)

        dm_node = node.createDecomposeMatrixNode(intMatrix + ".output")
        # pm.connectAttr(dm_node + ".outputRotate", self.twister[i].attr("rotate"))
        pm.parentConstraint(self.twister[i], self.ref_twist[i], maintainOffset=True)

        pm.connectAttr(self.ref_twist[i] + ".translate", cns + ".worldUpVector")
        self.div_cns_npo[i].setMatrix(tmp_div_npo_transform, worldSpace=True)

        # rotationdriver
        roll_ratio = (i + 1.00) / len(self.fk_ctl)
        mul1 = pm.createNode("multDoubleLinear")
        pm.connectAttr(roll_a.attr("outRoll"), mul1.attr("input1"))
        pm.setAttr(mul1.attr("input2"), ratio)

        mul2 = pm.createNode("multDoubleLinear")
        pm.connectAttr(roll_b.attr("outRoll"), mul2.attr("input1"))
        pm.setAttr(mul2.attr("input2"), (1. - ratio))

        add = pm.createNode("addDoubleLinear")
        pm.connectAttr(mul1.attr("output"), add.attr("input1"))
        pm.connectAttr(mul2.attr("output"), add.attr("input2"))

        compose_rot = pm.createNode("composeRotate")
        pm.setAttr(compose_rot.attr("axisOrientX"), 90.0)
        pm.setAttr(compose_rot.attr("axisOrientZ"), 90.0)
        pm.connectAttr(add.attr("output"), compose_rot.attr("roll"))
        pm.connectAttr(compose_rot.attr("outRotate"), self.div_roll_npo[i].attr("rotate"))

        # compensate scale reference
        div_node = node.createDivNode(
            [1, 1, 1],
            [rootWorld_node + ".outputScaleX",
             rootWorld_node + ".outputScaleY",
             rootWorld_node + ".outputScaleZ"])

        # Squash n Stretch
        op = applyop.gear_squashstretch2_op(self.scl_transforms[i],
                                            self.root,
                                            pm.arclen(self.slv_crv),
                                            "y",
                                            div_node + ".output")

        pm.connectAttr(self.volume_att, op + ".blend")
        pm.connectAttr(crv_node + ".arcLength", op + ".driver")
        # pm.connectAttr(self.st_att[i], op + ".stretch")
        # pm.connectAttr(self.sq_att[i], op + ".squash")

        # Controlers
        tmp_local_npo_transform = getTransform(self.fk_local_npo[i])  # to fix mismatch before/after later
        if i == 0:
            mulmat_node = applyop.gear_mulmatrix_op(
                self.div_roll_npo[i].attr("worldMatrix"),
                self.root.attr("worldInverseMatrix"))

            dm_node = node.createDecomposeMatrixNode(mulmat_node + ".output")
            pm.connectAttr(dm_node + ".outputTranslate", self.fk_npo[i].attr("t"))

        elif i != len(self.guide.apos) - 1:
            mulmat_node = applyop.gear_mulmatrix_op(
                self.div_roll_npo[i].attr("worldMatrix"),
                self.div_roll_npo[i - 1].attr("worldInverseMatrix"))

            dm_node = node.createDecomposeMatrixNode(mulmat_node + ".output")
            mul_node = node.createMulNode(div_node + ".output", dm_node + ".outputTranslate")
            pm.connectAttr(mul_node + ".output", self.fk_npo[i].attr("t"))

        else:
            pass

        if i == len(self.guide.apos) - 1:
            # pm.connectAttr(dm_node + ".outputRotate", self.fk_local_npo2.attr("r"))
            _ = pm.parentConstraint(self.ik_ctl[-1],
                                    self.fk_local_npo2,
                                    skipTranslate=("x", "y", "z"),
                                    maintainOffset=True)
        else:
            pm.connectAttr(dm_node + ".outputRotate", self.fk_npo[i].attr("r"))
        # self.addOperatorsOrientationLock(i, cns)
        self.fk_local_npo[i].setMatrix(tmp_local_npo_transform, worldSpace=True)

        # References
        if i < (len(self.fk_ctl) - 1):

            if self.negate:
                aim = (0., 1., 0.)
                upv = (0., 0., 1.)
            else:
                aim = (0., -1., 0.)
                upv = (0., 0., -1.)

            pm.aimConstraint(self.div_cns_npo[i + 1],
                             self.div_cns_npo[i],
                             mo=True,
                             worldUpType="object",
                             worldUpObject=self.fk_upvectors[i],
                             worldUpVector=(0., 1., 0.),
                             aimVector=aim,
                             upVector=upv,
                             )
示例#11
0
    def addOperators(self):
        """Create operators and set the relations for the component rig

        Apply operators, constraints, expressions to the hierarchy.
        In order to keep the code clean and easier to debug,
        we shouldn't create any new object in this method.

        """
        # Curves -------------------------------------------
        op = applyop.gear_curveslide2_op(self.slv_crv, self.mst_crv, 0, 1.5,
                                         .5, .5)

        pm.connectAttr(self.position_att, op + ".position")
        pm.connectAttr(self.maxstretch_att, op + ".maxstretch")
        pm.connectAttr(self.maxsquash_att, op + ".maxsquash")
        pm.connectAttr(self.softness_att, op + ".softness")

        # Division -----------------------------------------
        rootWorld_node = node.createDecomposeMatrixNode(
            self.root.attr("worldMatrix"))
        for i in range(self.settings["fkNb"]):

            # References
            u = i / (self.settings["fkNb"] - 1.0)
            if i == 0:  # we add extra 10% to the first position
                u = (1.0 / (self.settings["fkNb"] - 1.0)) / 10

            cns = applyop.pathCns(self.div_cns[i], self.slv_crv, False, u,
                                  True)

            cns.setAttr("frontAxis", 0)  # front axis is 'X'
            cns.setAttr("upAxis", 2)  # front axis is 'Z'

            # Roll
            intMatrix = applyop.gear_intmatrix_op(
                self.ik_ctl[0] + ".worldMatrix",
                self.ik_ctl[-1] + ".worldMatrix", u)

            dm_node = node.createDecomposeMatrixNode(intMatrix + ".output")
            pm.connectAttr(dm_node + ".outputRotate",
                           self.twister[i].attr("rotate"))

            pm.parentConstraint(self.twister[i],
                                self.ref_twist[i],
                                maintainOffset=True)

            pm.connectAttr(self.ref_twist[i] + ".translate",
                           cns + ".worldUpVector")

            # compensate scale reference
            div_node = node.createDivNode([1, 1, 1], [
                rootWorld_node + ".outputScaleX", rootWorld_node +
                ".outputScaleY", rootWorld_node + ".outputScaleZ"
            ])

            # Controlers
            if i == 0:
                mulmat_node = applyop.gear_mulmatrix_op(
                    self.div_cns[i].attr("worldMatrix"),
                    self.root.attr("worldInverseMatrix"))

                dm_node = node.createDecomposeMatrixNode(mulmat_node +
                                                         ".output")

                pm.connectAttr(dm_node + ".outputTranslate",
                               self.fk_npo[i].attr("t"))

            else:
                mulmat_node = applyop.gear_mulmatrix_op(
                    self.div_cns[i].attr("worldMatrix"),
                    self.div_cns[i - 1].attr("worldInverseMatrix"))

                dm_node = node.createDecomposeMatrixNode(mulmat_node +
                                                         ".output")

                mul_node = node.createMulNode(div_node + ".output",
                                              dm_node + ".outputTranslate")

                pm.connectAttr(mul_node + ".output", self.fk_npo[i].attr("t"))

            pm.connectAttr(dm_node + ".outputRotate", self.fk_npo[i].attr("r"))

            # Orientation Lock
            if i == 0:
                dm_node = node.createDecomposeMatrixNode(self.ik_ctl[0] +
                                                         ".worldMatrix")

                blend_node = node.createBlendNode(
                    [dm_node + ".outputRotate%s" % s for s in "XYZ"],
                    [cns + ".rotate%s" % s for s in "XYZ"], 0)

                self.div_cns[i].attr("rotate").disconnect()

                pm.connectAttr(blend_node + ".output",
                               self.div_cns[i] + ".rotate")

            elif i == self.settings["fkNb"] - 1:
                dm_node = node.createDecomposeMatrixNode(self.ik_ctl[-1] +
                                                         ".worldMatrix")

                blend_node = node.createBlendNode(
                    [dm_node + ".outputRotate%s" % s for s in "XYZ"],
                    [cns + ".rotate%s" % s for s in "XYZ"], 0)

                self.div_cns[i].attr("rotate").disconnect()
                pm.connectAttr(blend_node + ".output",
                               self.div_cns[i] + ".rotate")
示例#12
0
    def addOperators(self):
        """Create operators and set the relations for the component rig

        Apply operators, constraints, expressions to the hierarchy.
        In order to keep the code clean and easier to debug,
        we shouldn't create any new object in this method.

        """

        # Tangent position ---------------------------------
        # common part
        d = vector.getDistance(self.guide.apos[0], self.guide.apos[1])
        dist_node = node.createDistNode(self.ik0_ctl, self.ik1_ctl)
        rootWorld_node = node.createDecomposeMatrixNode(
            self.root.attr("worldMatrix"))

        div_node = node.createDivNode(dist_node + ".distance",
                                      rootWorld_node + ".outputScaleX")

        div_node = node.createDivNode(div_node + ".outputX", d)

        # tan0
        mul_node = node.createMulNode(self.tan0_att,
                                      self.tan0_npo.getAttr("ty"))

        res_node = node.createMulNode(mul_node + ".outputX",
                                      div_node + ".outputX")

        pm.connectAttr(res_node + ".outputX", self.tan0_npo.attr("ty"))

        # tan1
        mul_node = node.createMulNode(self.tan1_att,
                                      self.tan1_npo.getAttr("ty"))

        res_node = node.createMulNode(mul_node + ".outputX",
                                      div_node + ".outputX")

        pm.connectAttr(res_node + ".outputX", self.tan1_npo.attr("ty"))

        # Tangent Mid --------------------------------------
        if self.settings["centralTangent"]:
            tanIntMat = applyop.gear_intmatrix_op(
                self.tan0_npo.attr("worldMatrix"),
                self.tan1_npo.attr("worldMatrix"), .5)

            applyop.gear_mulmatrix_op(
                tanIntMat.attr("output"),
                self.tan_npo.attr("parentInverseMatrix[0]"), self.tan_npo)

            pm.connectAttr(self.tan_ctl.attr("translate"),
                           self.tan0_off.attr("translate"))

            pm.connectAttr(self.tan_ctl.attr("translate"),
                           self.tan1_off.attr("translate"))

        # Curves -------------------------------------------
        op = applyop.gear_curveslide2_op(self.slv_crv, self.mst_crv, 0, 1.5,
                                         .5, .5)

        pm.connectAttr(self.position_att, op + ".position")
        pm.connectAttr(self.maxstretch_att, op + ".maxstretch")
        pm.connectAttr(self.maxsquash_att, op + ".maxsquash")
        pm.connectAttr(self.softness_att, op + ".softness")

        # Volume driver ------------------------------------
        crv_node = node.createCurveInfoNode(self.slv_crv)

        # Division -----------------------------------------
        for i in range(self.settings["division"]):

            # References
            u = i / (self.settings["division"] - 1.0)

            cns = applyop.pathCns(self.div_cns[i], self.slv_crv, False, u,
                                  True)

            cns.setAttr("frontAxis", 1)  # front axis is 'Y'
            cns.setAttr("upAxis", 0)  # front axis is 'X'

            # Roll
            intMatrix = applyop.gear_intmatrix_op(
                self.ik0_ctl + ".worldMatrix", self.ik1_ctl + ".worldMatrix",
                u)

            dm_node = node.createDecomposeMatrixNode(intMatrix + ".output")
            pm.connectAttr(dm_node + ".outputRotate",
                           self.twister[i].attr("rotate"))

            pm.parentConstraint(self.twister[i],
                                self.ref_twist[i],
                                maintainOffset=True)

            pm.connectAttr(self.ref_twist[i] + ".translate",
                           cns + ".worldUpVector")

            # Squash n Stretch
            op = applyop.gear_squashstretch2_op(self.scl_transforms[i],
                                                self.root,
                                                pm.arclen(self.slv_crv), "y")

            pm.connectAttr(self.volume_att, op + ".blend")
            pm.connectAttr(crv_node + ".arcLength", op + ".driver")
            pm.connectAttr(self.st_att[i], op + ".stretch")
            pm.connectAttr(self.sq_att[i], op + ".squash")

        # Connections (Hooks) ------------------------------
        pm.pointConstraint(self.scl_transforms[0], self.cnx0)
        pm.scaleConstraint(self.scl_transforms[0], self.cnx0)
        pm.orientConstraint(self.ik0_ctl, self.cnx0)
        pm.pointConstraint(self.scl_transforms[-1], self.cnx1)
        pm.scaleConstraint(self.scl_transforms[-1], self.cnx1)
        pm.orientConstraint(self.ik1_ctl, self.cnx1)
示例#13
0
    def addOperators(self):
        """Create operators and set the relations for the component rig

        Apply operators, constraints, expressions to the hierarchy.
        In order to keep the code clean and easier to debug,
        we shouldn't create any new object in this method.

        """

        # Auto bend ----------------------------
        if self.settings["autoBend"]:
            mul_node = node.createMulNode(
                [self.autoBendChain[0].ry, self.autoBendChain[0].rz],
                [self.sideBend_att, self.frontBend_att])

            mul_node.outputX >> self.ik1autoRot_lvl.rz
            mul_node.outputY >> self.ik1autoRot_lvl.rx

            self.ikHandleAutoBend = primitive.addIkHandle(
                self.autoBend_ctl, self.getName("ikHandleAutoBend"),
                self.autoBendChain, "ikSCsolver")

        # Tangent position ---------------------------------
        # common part
        d = vector.getDistance(self.guide.apos[1], self.guide.apos[-2])
        dist_node = node.createDistNode(self.ik0_ctl, self.ik1_ctl)
        rootWorld_node = node.createDecomposeMatrixNode(
            self.root.attr("worldMatrix"))

        div_node = node.createDivNode(dist_node + ".distance",
                                      rootWorld_node + ".outputScaleX")

        div_node = node.createDivNode(div_node + ".outputX", d)

        # tan0
        mul_node = node.createMulNode(self.tan0_att,
                                      self.tan0_npo.getAttr("ty"))

        res_node = node.createMulNode(mul_node + ".outputX",
                                      div_node + ".outputX")

        pm.connectAttr(res_node + ".outputX", self.tan0_npo.attr("ty"))

        # tan1
        mul_node = node.createMulNode(self.tan1_att,
                                      self.tan1_npo.getAttr("ty"))

        res_node = node.createMulNode(mul_node + ".outputX",
                                      div_node + ".outputX")

        pm.connectAttr(res_node + ".outputX", self.tan1_npo.attr("ty"))

        # Tangent Mid --------------------------------------
        if self.settings["centralTangent"]:
            tanIntMat = applyop.gear_intmatrix_op(
                self.tan0_npo.attr("worldMatrix"),
                self.tan1_npo.attr("worldMatrix"), .5)

            applyop.gear_mulmatrix_op(
                tanIntMat.attr("output"),
                self.tan_npo.attr("parentInverseMatrix[0]"), self.tan_npo)

            pm.connectAttr(self.tan_ctl.attr("translate"),
                           self.tan0_off.attr("translate"))

            pm.connectAttr(self.tan_ctl.attr("translate"),
                           self.tan1_off.attr("translate"))

        # Curves -------------------------------------------
        op = applyop.gear_curveslide2_op(self.slv_crv, self.mst_crv, 0, 1.5,
                                         .5, .5)

        pm.connectAttr(self.position_att, op + ".position")
        pm.connectAttr(self.maxstretch_att, op + ".maxstretch")
        pm.connectAttr(self.maxsquash_att, op + ".maxsquash")
        pm.connectAttr(self.softness_att, op + ".softness")

        # Volume driver ------------------------------------
        crv_node = node.createCurveInfoNode(self.slv_crv)

        # Division -----------------------------------------
        tangents = [None, "tan0", "tan1"]
        for i in range(self.settings["division"]):

            # References
            u = i / (self.settings["division"] - 1.0)

            # check the indx to calculate mid point based on number of division
            # we want to use the same spine for mannequin and metahuman spine
            if self.settings["division"] == 4 and i in [1, 2]:
                u_param = curve.getCurveParamAtPosition(
                    self.slv_crv, self.guide.pos[tangents[i]])[0]
                cnsType = True
            elif self.settings["division"] == 3 and i in [1]:
                u_param = curve.getCurveParamAtPosition(
                    self.slv_crv, self.guide.pos[tangents[i]])[0]
                cnsType = True
            else:
                u_param = u
                cnsType = False

            cns = applyop.pathCns(self.div_cns[i], self.slv_crv, cnsType,
                                  u_param, True)

            cns.setAttr("frontAxis", 1)  # front axis is 'Y'
            cns.setAttr("upAxis", 0)  # front axis is 'X'

            # Roll
            intMatrix = applyop.gear_intmatrix_op(
                self.ik0_ctl + ".worldMatrix", self.ik1_ctl + ".worldMatrix",
                u)

            dm_node = node.createDecomposeMatrixNode(intMatrix + ".output")
            pm.connectAttr(dm_node + ".outputRotate",
                           self.twister[i].attr("rotate"))

            pm.parentConstraint(self.twister[i],
                                self.ref_twist[i],
                                maintainOffset=True)

            pm.connectAttr(self.ref_twist[i] + ".translate",
                           cns + ".worldUpVector")

            # compensate scale reference
            div_node = node.createDivNode([1, 1, 1], [
                rootWorld_node + ".outputScaleX", rootWorld_node +
                ".outputScaleY", rootWorld_node + ".outputScaleZ"
            ])

            # Squash n Stretch
            op = applyop.gear_squashstretch2_op(self.scl_transforms[i],
                                                self.root,
                                                pm.arclen(self.slv_crv), "y",
                                                div_node + ".output")

            pm.connectAttr(self.volume_att, op + ".blend")
            pm.connectAttr(crv_node + ".arcLength", op + ".driver")
            pm.connectAttr(self.st_att[i], op + ".stretch")
            pm.connectAttr(self.sq_att[i], op + ".squash")

            # Controlers
            if i == 0:
                mulmat_node = applyop.gear_mulmatrix_op(
                    self.div_cns[i].attr("worldMatrix"),
                    self.root.attr("worldInverseMatrix"))

                dm_node = node.createDecomposeMatrixNode(mulmat_node +
                                                         ".output")

                pm.connectAttr(dm_node + ".outputTranslate",
                               self.fk_npo[i].attr("t"))

            else:
                mulmat_node = applyop.gear_mulmatrix_op(
                    self.div_cns[i].attr("worldMatrix"),
                    self.div_cns[i - 1].attr("worldInverseMatrix"))

                dm_node = node.createDecomposeMatrixNode(mulmat_node +
                                                         ".output")

                mul_node = node.createMulNode(div_node + ".output",
                                              dm_node + ".outputTranslate")

                pm.connectAttr(mul_node + ".output", self.fk_npo[i].attr("t"))

            pm.connectAttr(dm_node + ".outputRotate", self.fk_npo[i].attr("r"))

            # Orientation Lock
            if i == 0:
                dm_node = node.createDecomposeMatrixNode(self.ik0_ctl +
                                                         ".worldMatrix")

                blend_node = node.createBlendNode(
                    [dm_node + ".outputRotate%s" % s for s in "XYZ"],
                    [cns + ".rotate%s" % s for s in "XYZ"], self.lock_ori0_att)

                self.div_cns[i].attr("rotate").disconnect()

                pm.connectAttr(blend_node + ".output",
                               self.div_cns[i] + ".rotate")

            elif i == self.settings["division"] - 1:
                dm_node = node.createDecomposeMatrixNode(self.ik1_ctl +
                                                         ".worldMatrix")

                blend_node = node.createBlendNode(
                    [dm_node + ".outputRotate%s" % s for s in "XYZ"],
                    [cns + ".rotate%s" % s for s in "XYZ"], self.lock_ori1_att)

                self.div_cns[i].attr("rotate").disconnect()
                pm.connectAttr(blend_node + ".output",
                               self.div_cns[i] + ".rotate")

        # change parent after operators applied
        pm.parent(self.scl_transforms[-1], self.fk_ctl[-1])

        # Connections (Hooks) ------------------------------
        pm.parentConstraint(self.pelvis_lvl, self.cnx0)
        pm.scaleConstraint(self.pelvis_lvl, self.cnx0)

        transform.matchWorldTransform(self.scl_transforms[-1], self.cnx1)
        t = transform.setMatrixPosition(transform.getTransform(self.cnx1),
                                        self.guide.apos[-1])
        self.cnx1.setMatrix(t, worldSpace=True)
        pm.parentConstraint(self.scl_transforms[-1], self.cnx1, mo=True)
        pm.scaleConstraint(self.scl_transforms[-1], self.cnx1)