示例#1
0
    def addObjects(self):
        """Add the Guide Root, blade and locators"""

        self.root = self.addRoot()
        vTemp = transform.getOffsetPosition(self.root, [0, 4, 0])
        self.tip = self.addLoc("tip", self.root, vTemp)

        vTan0 = vector.linearlyInterpolate(
            self.root.getTranslation(space="world"),
            self.tip.getTranslation(space="world"), 0.3333)
        self.tan0 = self.addLoc("tan0", self.root, vTan0)

        vTan1 = vector.linearlyInterpolate(
            self.tip.getTranslation(space="world"),
            self.root.getTranslation(space="world"), 0.3333)
        self.tan1 = self.addLoc("tan1", self.tip, vTan1)

        self.blade = self.addBlade("blade", self.root, self.tan0)

        # spine curve
        centers = [self.root, self.tan0, self.tan1, self.tip]
        self.dispcrv = self.addDispCurve("crv", centers, 3)
        self.dispcrv.attr("lineWidth").set(5)

        # tangent handles
        self.disp_tancrv0 = self.addDispCurve("crvTan0",
                                              [self.root, self.tan0])
        self.disp_tancrv1 = self.addDispCurve("crvTan1", [self.tip, self.tan1])
示例#2
0
文件: guide.py 项目: Mikfr83/mgear4
    def addObjects(self):
        """Add the Guide Root, blade and locators"""

        self.root = self.addRoot()
        vTemp = transform.getOffsetPosition(self.root, [0, 1, 0])
        self.neck = self.addLoc("neck", self.root, vTemp)
        vTemp = transform.getOffsetPosition(self.root, [0, 1.1, 0])
        self.head = self.addLoc("head", self.neck, vTemp)
        vTemp = transform.getOffsetPosition(self.root, [0, 2, 0])
        self.eff = self.addLoc("eff", self.head, vTemp)

        v0 = vector.linearlyInterpolate(
            self.root.getTranslation(space="world"),
            self.neck.getTranslation(space="world"),
            0.333,
        )

        self.tan0 = self.addLoc("tan0", self.root, v0)
        v1 = vector.linearlyInterpolate(
            self.root.getTranslation(space="world"),
            self.neck.getTranslation(space="world"),
            0.666,
        )

        self.tan1 = self.addLoc("tan1", self.neck, v1)

        self.blade = self.addBlade("blade", self.root, self.tan0)

        centers = [self.root, self.tan0, self.tan1, self.neck]
        self.dispcrv = self.addDispCurve("neck_crv", centers, 3)

        centers = [self.neck, self.head, self.eff]
        self.dispcrv = self.addDispCurve("head_crv", centers, 1)
示例#3
0
def getInterpolateTransformMatrix(t1, t2, blend=.5):
    """Interpolate 2 matrix.

    Arguments:
        t1 (matrix): Input matrix 1.
        t2 (matrix): Input matrix 2.
        blend (float): The blending value. Default 0.5

    Returns:
        matrix: The newly interpolated transformation matrix.

    >>> t = tra.getInterpolateTransformMatrix(self.fk_ctl[0],
                                              self.tws1A_npo,
                                              .3333)

    """
    # check if the input transforms are transformMatrix
    t1 = convert2TransformMatrix(t1)
    t2 = convert2TransformMatrix(t2)

    if (blend == 1.0):
        return t2
    elif (blend == 0.0):
        return t1

    # translate
    pos = vector.linearlyInterpolate(t1.getTranslation(space="world"),
                                     t2.getTranslation(space="world"),
                                     blend)

    # scale
    scaleA = datatypes.Vector(*t1.getScale(space="world"))
    scaleB = datatypes.Vector(*t2.getScale(space="world"))

    vs = vector.linearlyInterpolate(scaleA, scaleB, blend)

    # rotate
    q = quaternionSlerp(datatypes.Quaternion(t1.getRotationQuaternion()),
                        datatypes.Quaternion(t2.getRotationQuaternion()),
                        blend)

    # out
    result = datatypes.TransformationMatrix()

    result.setTranslation(pos, space="world")
    result.setRotationQuaternion(q.x, q.y, q.z, q.w)
    result.setScale([vs.x, vs.y, vs.z], space="world")

    return result
示例#4
0
def constrainPointToVectorPlanar(point_a,
                                 point_b,
                                 driven_point,
                                 pcp=False,
                                 ws=True):
    """constrain a driven_point to the vector between two points

    Args:
        point_a (vector): point in space
        point_b (vector): point in space
        driven_point (str): target node to be constrained
        pcp (bool, optional): preserve child position
        ws (bool, optional): worldspace
    """
    point_a = pm.PyNode(point_a)
    point_b = pm.PyNode(point_b)
    drivent_point = pm.PyNode(driven_point)
    v = vector.linearlyInterpolate(
        point_a.getMatrix(ws=ws).translate,
        point_b.getMatrix(ws=ws).translate)
    v.normalize()

    p1 = v * dot(drivent_point.getMatrix(ws=ws).translate, v)
    # p1.normalize()
    if pcp:
        cmds.move(p1[0],
                  p1[1],
                  p1[2],
                  drivent_point.name(),
                  os=not ws,
                  pcp=True)
    else:
        drivent_point.setTranslation(p1, ws=True)
def getRepositionMatrix(node_matrix, orig_ref_matrix, mr_orig_ref_matrix,
                        closestVerts):
    """Get the delta matrix from the original position and multiply by the
    new vert position. Add the rotations from the face normals.

    Args:
        node_matrix (pm.dt.Matrix): matrix of the guide
        orig_ref_matrix (pm.dt.Matrix): matrix from the original vert position
        closestVerts (str): name of the closest vert

    Returns:
        mmatrix: matrix of the new offset position, worldSpace
    """
    current_vert = pm.PyNode(closestVerts[0])
    mr_current_vert = pm.PyNode(closestVerts[1])
    current_length = vector.getDistance(current_vert.getPosition("world"),
                                        mr_current_vert.getPosition("world"))

    orig_length = vector.getDistance(orig_ref_matrix.translate,
                                     mr_orig_ref_matrix.translate)
    orig_center = vector.linearlyInterpolate(orig_ref_matrix.translate,
                                             mr_orig_ref_matrix.translate)
    orig_center_matrix = pm.dt.Matrix()
    # orig_center_matrix.setTranslation(orig_center, pm.dt.Space.kWorld)
    orig_center_matrix = transform.setMatrixPosition(orig_center_matrix,
                                                     orig_center)

    current_center = vector.linearlyInterpolate(
        current_vert.getPosition("world"),
        mr_current_vert.getPosition("world"))

    length_percentage = 1
    if current_length != 0 or orig_length != 0:
        length_percentage = current_length / orig_length
    # refPosition_matrix = pm.dt.TransformationMatrix()
    refPosition_matrix = pm.dt.Matrix()
    # refPosition_matrix.setTranslation(current_center, pm.dt.Space.kWorld)
    refPosition_matrix = transform.setMatrixPosition(refPosition_matrix,
                                                     current_center)
    deltaMatrix = node_matrix * orig_center_matrix.inverse()
    deltaMatrix = deltaMatrix * length_percentage
    deltaMatrix = transform.setMatrixScale(deltaMatrix)
    refPosition_matrix = deltaMatrix * refPosition_matrix

    return refPosition_matrix
示例#6
0
    def addObjects(self):
        """Add the Guide Root, blade and locators"""

        self.root = self.addRoot()
        vTemp = transform.getOffsetPosition(self.root, [0, 0, 0.5])
        self.spineBase = self.addLoc("spineBase", self.root, vTemp)
        vTemp = transform.getOffsetPosition(self.root, [0, 0, 4])
        self.spineTop = self.addLoc("spineTop", self.spineBase, vTemp)
        vTemp = transform.getOffsetPosition(self.root, [0, 0, 5])
        self.chest = self.addLoc("chest", self.spineTop, vTemp)

        vTan0 = vector.linearlyInterpolate(
            self.spineBase.getTranslation(space="world"),
            self.spineTop.getTranslation(space="world"),
            0.3333,
        )
        self.tan0 = self.addLoc("tan0", self.spineBase, vTan0)

        vTan1 = vector.linearlyInterpolate(
            self.spineTop.getTranslation(space="world"),
            self.spineBase.getTranslation(space="world"),
            0.3333,
        )
        self.tan1 = self.addLoc("tan1", self.spineTop, vTan1)

        self.blade = self.addBlade("blade", self.root, self.spineTop)

        # spine curve
        self.disp_crv_hip = self.addDispCurve(
            "crvHip", [self.root, self.spineBase]
        )
        self.disp_crv_chst = self.addDispCurve(
            "crvChest", [self.spineTop, self.chest]
        )
        centers = [self.spineBase, self.tan0, self.tan1, self.spineTop]
        self.dispcrv = self.addDispCurve("crv", centers, 3)
        self.dispcrv.attr("lineWidth").set(5)

        # tangent handles
        self.disp_tancrv0 = self.addDispCurve(
            "crvTan0", [self.spineBase, self.tan0]
        )
        self.disp_tancrv1 = self.addDispCurve(
            "crvTan1", [self.spineTop, self.tan1]
        )
示例#7
0
def adjustBackPointPosition(blend=.6, height_only=True):
    """constrain nodes of the back on a vector distributed evenly

    Args:
        blend (float, optional): defaulted to .6 to mimic a sternum
        height_only (bool, optional): only adjust the height of nodes
    """
    a = pm.PyNode("hips")
    b = pm.PyNode("shoulders")
    back_point = pm.PyNode("back")
    interp_vector = vector.linearlyInterpolate(a.getMatrix(ws=True).translate,
                                               b.getMatrix(ws=True).translate,
                                               blend=blend)
    if height_only:
        back_mat = back_point.getMatrix(ws=True)
        interp_vector[0] = back_mat.translate[0]
        interp_vector[2] = back_mat.translate[2]
    back_point.setTranslation(interp_vector)
示例#8
0
def linerlyInterperlateNodes(a, b, nodes):
    """place the nodes on a vector between point a and b, evenly spaced

    Args:
        a (str): name of node
        b (str): name of node b
        nodes (list): of nodes to place on vector
    """
    blend = 0
    blend_step = .5
    a = pm.PyNode(a)
    b = pm.PyNode(b)
    if len(nodes) > 1:
        blend_step = 1.0 / (len(nodes) + 1)
    for node in nodes:
        blend += blend_step
        node = pm.PyNode(node)
        a_trans = a.getMatrix(ws=True).translate
        b_trans = b.getMatrix(ws=True).translate
        interp_vector = vector.linearlyInterpolate(a_trans,
                                                   b_trans,
                                                   blend=blend)
        node.setTranslation(interp_vector)
示例#9
0
    def addObjects(self):
        """Add all the objects needed to create the component."""

        # Auto bend with position controls  -------------------
        if self.settings["autoBend"]:
            self.autoBendChain = primitive.add2DChain(
                self.root, self.getName("autoBend%s_jnt"),
                [self.guide.apos[0], self.guide.apos[-1]],
                self.guide.blades["blade"].z * -1, False, True)

            for j in self.autoBendChain:
                j.drawStyle.set(2)

        # Ik Controlers ------------------------------------
        if self.settings["IKWorldOri"]:
            t = datatypes.TransformationMatrix()
            t = transform.setMatrixPosition(t, self.guide.apos[0])
        else:
            t = transform.getTransformLookingAt(
                self.guide.apos[0], self.guide.apos[-1],
                self.guide.blades["blade"].z * -1, "yx", self.negate)

        self.ik0_npo = primitive.addTransform(self.root,
                                              self.getName("ik0_npo"), t)

        self.ik0_ctl = self.addCtl(self.ik0_npo,
                                   "ik0_ctl",
                                   t,
                                   self.color_ik,
                                   "compas",
                                   w=self.size,
                                   tp=self.parentCtlTag)

        attribute.setKeyableAttributes(self.ik0_ctl, self.tr_params)
        attribute.setRotOrder(self.ik0_ctl, "ZXY")
        attribute.setInvertMirror(self.ik0_ctl, ["tx", "ry", "rz"])

        # hip base joint
        # TODO: add option in setting for on/off
        if True:
            self.hip_lvl = primitive.addTransform(self.ik0_ctl,
                                                  self.getName("hip_lvl"), t)
            self.jnt_pos.append([self.hip_lvl, "hip"])

        t = transform.setMatrixPosition(t, self.guide.apos[-1])
        if self.settings["autoBend"]:
            self.autoBend_npo = primitive.addTransform(
                self.root, self.getName("spinePosition_npo"), t)

            self.autoBend_ctl = self.addCtl(self.autoBend_npo,
                                            "spinePosition_ctl",
                                            t,
                                            self.color_ik,
                                            "square",
                                            w=self.size,
                                            d=.3 * self.size,
                                            tp=self.parentCtlTag)

            attribute.setKeyableAttributes(self.autoBend_ctl,
                                           ["tx", "ty", "tz", "ry"])

            attribute.setInvertMirror(self.autoBend_ctl, ["tx", "ry"])

            self.ik1_npo = primitive.addTransform(self.autoBendChain[0],
                                                  self.getName("ik1_npo"), t)

            self.ik1autoRot_lvl = primitive.addTransform(
                self.ik1_npo, self.getName("ik1autoRot_lvl"), t)

            self.ik1_ctl = self.addCtl(self.ik1autoRot_lvl,
                                       "ik1_ctl",
                                       t,
                                       self.color_ik,
                                       "compas",
                                       w=self.size,
                                       tp=self.autoBend_ctl)
        else:
            t = transform.setMatrixPosition(t, self.guide.apos[-1])
            self.ik1_npo = primitive.addTransform(self.root,
                                                  self.getName("ik1_npo"), t)

            self.ik1_ctl = self.addCtl(self.ik1_npo,
                                       "ik1_ctl",
                                       t,
                                       self.color_ik,
                                       "compas",
                                       w=self.size,
                                       tp=self.ik0_ctl)

        attribute.setKeyableAttributes(self.ik1_ctl, self.tr_params)
        attribute.setRotOrder(self.ik1_ctl, "ZXY")
        attribute.setInvertMirror(self.ik1_ctl, ["tx", "ry", "rz"])

        # Tangent controllers -------------------------------
        if self.settings["centralTangent"]:
            # vec_pos = vector.linearlyInterpolate(self.guide.apos[0],
            #                                      self.guide.apos[-1],
            #                                      .33)
            vec_pos = self.guide.pos["tan0"]
            t = transform.setMatrixPosition(t, vec_pos)

            self.tan0_npo = primitive.addTransform(self.ik0_ctl,
                                                   self.getName("tan0_npo"), t)

            self.tan0_off = primitive.addTransform(self.tan0_npo,
                                                   self.getName("tan0_off"), t)

            self.tan0_ctl = self.addCtl(self.tan0_off,
                                        "tan0_ctl",
                                        t,
                                        self.color_ik,
                                        "sphere",
                                        w=self.size * .1,
                                        tp=self.ik0_ctl)

            attribute.setKeyableAttributes(self.tan0_ctl, self.t_params)
            # vec_pos = vector.linearlyInterpolate(self.guide.apos[0],
            #                                      self.guide.apos[-1],
            #                                      .66)
            vec_pos = self.guide.pos["tan1"]
            t = transform.setMatrixPosition(t, vec_pos)

            self.tan1_npo = primitive.addTransform(self.ik1_ctl,
                                                   self.getName("tan1_npo"), t)

            self.tan1_off = primitive.addTransform(self.tan1_npo,
                                                   self.getName("tan1_off"), t)

            self.tan1_ctl = self.addCtl(self.tan1_off,
                                        "tan1_ctl",
                                        t,
                                        self.color_ik,
                                        "sphere",
                                        w=self.size * .1,
                                        tp=self.ik0_ctl)

            attribute.setKeyableAttributes(self.tan1_ctl, self.t_params)

            # Tangent mid control
            vec_pos = vector.linearlyInterpolate(self.guide.apos[0],
                                                 self.guide.apos[-1], .5)
            t = transform.setMatrixPosition(t, vec_pos)

            self.tan_npo = primitive.addTransform(self.tan0_npo,
                                                  self.getName("tan_npo"), t)

            self.tan_ctl = self.addCtl(self.tan_npo,
                                       "tan_ctl",
                                       t,
                                       self.color_fk,
                                       "sphere",
                                       w=self.size * .2,
                                       tp=self.ik1_ctl)

            attribute.setKeyableAttributes(self.tan_ctl, self.t_params)
            attribute.setInvertMirror(self.tan_ctl, ["tx"])

        else:
            # vec_pos = vector.linearlyInterpolate(self.guide.apos[0],
            #                                      self.guide.apos[-1],
            #                                      .33)
            vec_pos = self.guide.pos["tan0"]
            t = transform.setMatrixPosition(t, vec_pos)

            self.tan0_npo = primitive.addTransform(self.ik0_ctl,
                                                   self.getName("tan0_npo"), t)

            self.tan0_ctl = self.addCtl(self.tan0_npo,
                                        "tan0_ctl",
                                        t,
                                        self.color_ik,
                                        "sphere",
                                        w=self.size * .2,
                                        tp=self.ik0_ctl)

            attribute.setKeyableAttributes(self.tan0_ctl, self.t_params)

            # vec_pos = vector.linearlyInterpolate(self.guide.apos[0],
            #                                      self.guide.apos[-1],
            #                                      .66)
            vec_pos = self.guide.pos["tan1"]
            t = transform.setMatrixPosition(t, vec_pos)

            self.tan1_npo = primitive.addTransform(self.ik1_ctl,
                                                   self.getName("tan1_npo"), t)

            self.tan1_ctl = self.addCtl(self.tan1_npo,
                                        "tan1_ctl",
                                        t,
                                        self.color_ik,
                                        "sphere",
                                        w=self.size * .2,
                                        tp=self.ik1_ctl)

            attribute.setKeyableAttributes(self.tan1_ctl, self.t_params)

        attribute.setInvertMirror(self.tan0_ctl, ["tx"])
        attribute.setInvertMirror(self.tan1_ctl, ["tx"])

        # Curves -------------------------------------------
        self.mst_crv = curve.addCnsCurve(
            self.root, self.getName("mst_crv"),
            [self.ik0_ctl, self.tan0_ctl, self.tan1_ctl, self.ik1_ctl], 3)
        self.slv_crv = curve.addCurve(self.root, self.getName("slv_crv"),
                                      [datatypes.Vector()] * 10, False, 3)
        self.mst_crv.setAttr("visibility", False)
        self.slv_crv.setAttr("visibility", False)

        # Division -----------------------------------------
        # The user only define how many intermediate division he wants.
        # First and last divisions are an obligation.
        parentdiv = self.root
        parentctl = self.root
        self.div_cns = []
        self.fk_ctl = []
        self.fk_npo = []
        self.scl_transforms = []
        self.twister = []
        self.ref_twist = []

        t = transform.getTransformLookingAt(self.guide.apos[0],
                                            self.guide.apos[-1],
                                            self.guide.blades["blade"].z * -1,
                                            "yx", self.negate)

        parent_twistRef = primitive.addTransform(
            self.root, self.getName("reference"),
            transform.getTransform(self.root))

        self.jointList = []
        self.preiviousCtlTag = self.parentCtlTag
        for i in range(self.settings["division"]):

            # References
            div_cns = primitive.addTransform(parentdiv,
                                             self.getName("%s_cns" % i))
            pm.setAttr(div_cns + ".inheritsTransform", False)
            self.div_cns.append(div_cns)
            parentdiv = div_cns

            # Controlers (First and last one are fake)
            # if i in [0]:
            # TODO: add option setting to add or not the first and
            #  last controller for the fk
            if i in [0, self.settings["division"] - 1] and False:
                # if i in [0, self.settings["division"] - 1]:
                fk_ctl = primitive.addTransform(
                    parentctl, self.getName("%s_loc" % i),
                    transform.getTransform(parentctl))

                fk_npo = fk_ctl
                if i in [self.settings["division"] - 1]:
                    self.fk_ctl.append(fk_ctl)
            else:
                m = transform.getTransform(self.root)
                t = transform.getTransform(parentctl)
                m.inverse()

                fk_npo = primitive.addTransform(parentctl,
                                                self.getName("fk%s_npo" % (i)),
                                                t)

                fk_ctl = self.addCtl(fk_npo,
                                     "fk%s_ctl" % (i),
                                     transform.getTransform(parentctl),
                                     self.color_fk,
                                     "cube",
                                     w=self.size,
                                     h=self.size * .05,
                                     d=self.size,
                                     tp=self.preiviousCtlTag)

                attribute.setKeyableAttributes(self.fk_ctl)
                attribute.setRotOrder(fk_ctl, "ZXY")
                self.fk_ctl.append(fk_ctl)
                self.preiviousCtlTag = fk_ctl

            self.fk_npo.append(fk_npo)
            parentctl = fk_ctl
            scl_ref = primitive.addTransform(parentctl,
                                             self.getName("%s_scl_ref" % i),
                                             transform.getTransform(parentctl))

            self.scl_transforms.append(scl_ref)

            # Deformers (Shadow)
            self.jnt_pos.append([scl_ref, i])

            # Twist references (This objects will replace the spinlookup
            # slerp solver behavior)
            t = transform.getTransformLookingAt(
                self.guide.apos[0], self.guide.apos[-1],
                self.guide.blades["blade"].z * -1, "yx", self.negate)

            twister = primitive.addTransform(parent_twistRef,
                                             self.getName("%s_rot_ref" % i), t)

            ref_twist = primitive.addTransform(parent_twistRef,
                                               self.getName("%s_pos_ref" % i),
                                               t)

            ref_twist.setTranslation(datatypes.Vector(1.0, 0, 0),
                                     space="preTransform")

            self.twister.append(twister)
            self.ref_twist.append(ref_twist)

            # TODO: update this part with the optiona FK controls update
            for x in self.fk_ctl[:-1]:
                attribute.setInvertMirror(x, ["tx", "rz", "ry"])

        # Connections (Hooks) ------------------------------
        self.cnx0 = primitive.addTransform(self.root, self.getName("0_cnx"))
        self.cnx1 = primitive.addTransform(self.root, self.getName("1_cnx"))
示例#10
0
    def addObjects(self):
        """Add all the objects needed to create the component."""

        self.WIP = self.options["mode"]

        self.normal = self.getNormalFromPos(self.guide.apos)

        self.length0 = vector.getDistance(self.guide.apos[0],
                                          self.guide.apos[1])
        self.length1 = vector.getDistance(self.guide.apos[1],
                                          self.guide.apos[2])
        self.length2 = vector.getDistance(self.guide.apos[2],
                                          self.guide.apos[3])

        # 1 bone chain for upv ref
        self.legChainUpvRef = primitive.add2DChain(
            self.root, self.getName("legUpvRef%s_jnt"),
            [self.guide.apos[0], self.guide.apos[2]], self.normal, False,
            self.WIP)
        self.legChainUpvRef[1].setAttr(
            "jointOrientZ",
            self.legChainUpvRef[1].getAttr("jointOrientZ") * -1)

        # extra neutral pose
        t = transform.getTransformFromPos(self.guide.apos[0])

        self.root_npo = primitive.addTransform(self.root,
                                               self.getName("root_npo"), t)
        self.root_ctl = self.addCtl(self.root_npo,
                                    "root_ctl",
                                    t,
                                    self.color_fk,
                                    "circle",
                                    w=self.length0 / 6,
                                    tp=self.parentCtlTag)

        # FK Controlers -----------------------------------
        t = transform.getTransformLookingAt(self.guide.apos[0],
                                            self.guide.apos[1], self.normal,
                                            "xz", self.negate)
        self.fk0_npo = primitive.addTransform(self.root_ctl,
                                              self.getName("fk0_npo"), t)
        self.fk0_ctl = self.addCtl(self.fk0_npo,
                                   "fk0_ctl",
                                   t,
                                   self.color_fk,
                                   "cube",
                                   w=self.length0,
                                   h=self.size * .1,
                                   d=self.size * .1,
                                   po=datatypes.Vector(
                                       .5 * self.length0 * self.n_factor, 0,
                                       0),
                                   tp=self.root_ctl)
        attribute.setKeyableAttributes(
            self.fk0_ctl, ["tx", "ty", "tz", "ro", "rx", "ry", "rz", "sx"])

        t = transform.getTransformLookingAt(self.guide.apos[1],
                                            self.guide.apos[2], self.normal,
                                            "xz", self.negate)
        self.fk1_npo = primitive.addTransform(self.fk0_ctl,
                                              self.getName("fk1_npo"), t)
        self.fk1_ctl = self.addCtl(self.fk1_npo,
                                   "fk1_ctl",
                                   t,
                                   self.color_fk,
                                   "cube",
                                   w=self.length1,
                                   h=self.size * .1,
                                   d=self.size * .1,
                                   po=datatypes.Vector(
                                       .5 * self.length1 * self.n_factor, 0,
                                       0),
                                   tp=self.fk0_ctl)

        attribute.setKeyableAttributes(
            self.fk1_ctl, ["tx", "ty", "tz", "ro", "rx", "ry", "rz", "sx"])

        t = transform.getTransformLookingAt(self.guide.apos[2],
                                            self.guide.apos[3], self.normal,
                                            "xz", self.negate)

        self.fk2_npo = primitive.addTransform(self.fk1_ctl,
                                              self.getName("fk2_npo"), t)

        self.fk2_ctl = self.addCtl(self.fk2_npo,
                                   "fk2_ctl",
                                   t,
                                   self.color_fk,
                                   "cube",
                                   w=self.length2,
                                   h=self.size * .1,
                                   d=self.size * .1,
                                   po=datatypes.Vector(
                                       .5 * self.length2 * self.n_factor, 0,
                                       0),
                                   tp=self.fk1_ctl)
        attribute.setKeyableAttributes(self.fk2_ctl)

        self.fk_ctl = [self.fk0_ctl, self.fk1_ctl, self.fk2_ctl]

        for x in self.fk_ctl:
            attribute.setInvertMirror(x, ["tx", "ty", "tz"])

        # IK Controlers -----------------------------------

        self.ik_cns = primitive.addTransformFromPos(self.root_ctl,
                                                    self.getName("ik_cns"),
                                                    self.guide.pos["ankle"])

        self.ikcns_ctl = self.addCtl(self.ik_cns,
                                     "ikcns_ctl",
                                     transform.getTransformFromPos(
                                         self.guide.pos["ankle"]),
                                     self.color_ik,
                                     "null",
                                     w=self.size * .12,
                                     tp=self.root_ctl)
        attribute.setInvertMirror(self.ikcns_ctl, ["tx"])

        m = transform.getTransformLookingAt(self.guide.pos["ankle"],
                                            self.guide.pos["eff"], self.x_axis,
                                            "zx", False)

        self.ik_ctl = self.addCtl(self.ikcns_ctl,
                                  "ik_ctl",
                                  transform.getTransformFromPos(
                                      self.guide.pos["ankle"]),
                                  self.color_ik,
                                  "cube",
                                  w=self.size * .12,
                                  h=self.size * .12,
                                  d=self.size * .12,
                                  tp=self.ikcns_ctl)
        attribute.setKeyableAttributes(self.ik_ctl)
        attribute.setRotOrder(self.ik_ctl, "XZY")
        attribute.setInvertMirror(self.ik_ctl, ["tx", "ry", "rz"])

        # upv
        v = self.guide.apos[2] - self.guide.apos[0]
        v = self.normal ^ v
        v.normalize()
        v *= self.size * .5
        v += self.guide.apos[1]

        self.upv_cns = primitive.addTransformFromPos(self.ik_ctl,
                                                     self.getName("upv_cns"),
                                                     v)

        self.upv_ctl = self.addCtl(self.upv_cns,
                                   "upv_ctl",
                                   transform.getTransform(self.upv_cns),
                                   self.color_ik,
                                   "diamond",
                                   w=self.size * .12,
                                   tp=self.root_ctl)

        if self.settings["mirrorMid"]:
            if self.negate:
                self.upv_cns.rz.set(180)
                self.upv_cns.sy.set(-1)
        else:
            attribute.setInvertMirror(self.upv_ctl, ["tx"])
        attribute.setKeyableAttributes(self.upv_ctl, self.t_params)

        # References --------------------------------------
        self.ik_ref = primitive.addTransform(
            self.ik_ctl, self.getName("ik_ref"),
            transform.getTransform(self.ik_ctl))
        self.fk_ref = primitive.addTransform(
            self.fk_ctl[2], self.getName("fk_ref"),
            transform.getTransform(self.ik_ctl))

        # Chain --------------------------------------------
        # The outputs of the ikfk2bone solver
        self.bone0 = primitive.addLocator(
            self.root_ctl, self.getName("0_bone"),
            transform.getTransform(self.fk_ctl[0]))

        self.bone0_shp = self.bone0.getShape()
        self.bone0_shp.setAttr("localPositionX", self.n_factor * .5)
        self.bone0_shp.setAttr("localScale", .5, 0, 0)
        self.bone0.setAttr("sx", self.length0)
        self.bone0.setAttr("visibility", False)

        self.bone1 = primitive.addLocator(
            self.root_ctl, self.getName("1_bone"),
            transform.getTransform(self.fk_ctl[1]))

        self.bone1_shp = self.bone1.getShape()
        self.bone1_shp.setAttr("localPositionX", self.n_factor * .5)
        self.bone1_shp.setAttr("localScale", .5, 0, 0)
        self.bone1.setAttr("sx", self.length1)
        self.bone1.setAttr("visibility", False)

        tA = transform.getTransformLookingAt(self.guide.apos[0],
                                             self.guide.apos[1], self.normal,
                                             "xz", self.negate)
        tA = transform.setMatrixPosition(tA, self.guide.apos[1])
        tB = transform.getTransformLookingAt(self.guide.apos[1],
                                             self.guide.apos[2], self.normal,
                                             "xz", self.negate)
        t = transform.getInterpolateTransformMatrix(tA, tB)
        self.ctrn_loc = primitive.addTransform(self.root,
                                               self.getName("ctrn_loc"), t)
        self.eff_loc = primitive.addTransformFromPos(self.root_ctl,
                                                     self.getName("eff_loc"),
                                                     self.guide.apos[2])

        # tws_ref
        t = transform.getRotationFromAxis(datatypes.Vector(0, -1, 0),
                                          self.normal, "xz", self.negate)
        t = transform.setMatrixPosition(t, self.guide.pos["ankle"])

        self.tws_ref = primitive.addTransform(self.eff_loc,
                                              self.getName("tws_ref"), t)

        # Mid Controler ------------------------------------
        t = transform.getTransform(self.ctrn_loc)
        self.mid_cns = primitive.addTransform(self.ctrn_loc,
                                              self.getName("mid_cns"), t)
        self.mid_ctl = self.addCtl(self.mid_cns,
                                   "mid_ctl",
                                   t,
                                   self.color_ik,
                                   "sphere",
                                   w=self.size * .2,
                                   tp=self.root_ctl)
        if self.settings["mirrorMid"]:
            if self.negate:
                self.mid_cns.rz.set(180)
                self.mid_cns.sz.set(-1)
        else:
            attribute.setInvertMirror(self.mid_ctl, ["tx", "ty", "tz"])
        attribute.setKeyableAttributes(self.mid_ctl, self.t_params)

        # Twist references ---------------------------------
        x = datatypes.Vector(0, -1, 0)
        x = x * transform.getTransform(self.eff_loc)
        z = datatypes.Vector(self.normal.x, self.normal.y, self.normal.z)
        z = z * transform.getTransform(self.eff_loc)

        m = transform.getRotationFromAxis(x, z, "xz", self.negate)
        m = transform.setMatrixPosition(m,
                                        transform.getTranslation(self.ik_ctl))

        self.tws0_loc = primitive.addTransform(
            self.root_ctl, self.getName("tws0_loc"),
            transform.getTransform(self.fk_ctl[0]))
        self.tws0_rot = primitive.addTransform(
            self.tws0_loc, self.getName("tws0_rot"),
            transform.getTransform(self.fk_ctl[0]))

        self.tws1_loc = primitive.addTransform(
            self.ctrn_loc, self.getName("tws1_loc"),
            transform.getTransform(self.ctrn_loc))
        self.tws1_rot = primitive.addTransform(
            self.tws1_loc, self.getName("tws1_rot"),
            transform.getTransform(self.ctrn_loc))

        self.tws1A_npo = primitive.addTransform(self.mid_ctl,
                                                self.getName("tws1A_npo"), tA)
        self.tws1A_loc = primitive.addTransform(self.tws1A_npo,
                                                self.getName("tws1A_loc"), tA)
        self.tws1B_npo = primitive.addTransform(self.mid_ctl,
                                                self.getName("tws1B_npo"), tB)
        self.tws1B_loc = primitive.addTransform(self.tws1B_npo,
                                                self.getName("tws1B_loc"), tB)

        self.tws2_npo = primitive.addTransform(
            self.root, self.getName("tws2_npo"),
            transform.getTransform(self.fk_ctl[2]))
        self.tws2_loc = primitive.addTransform(
            self.tws2_npo, self.getName("tws2_loc"),
            transform.getTransform(self.fk_ctl[2]))
        self.tws2_rot = primitive.addTransform(
            self.tws2_npo, self.getName("tws2_rot"),
            transform.getTransform(self.fk_ctl[2]))

        # Roll twist chain ---------------------------------
        # Arm
        self.uplegChainPos = []
        ii = 1.0 / (self.settings["div0"] + 1)
        i = 0.0
        for p in range(self.settings["div0"] + 2):
            self.uplegChainPos.append(
                vector.linearlyInterpolate(self.guide.pos["root"],
                                           self.guide.pos["knee"],
                                           blend=i))
            i = i + ii

        self.uplegTwistChain = primitive.add2DChain(
            self.root, self.getName("uplegTwist%s_jnt"), self.uplegChainPos,
            self.normal, False, self.WIP)

        # Forearm
        self.lowlegChainPos = []
        ii = 1.0 / (self.settings["div1"] + 1)
        i = 0.0
        for p in range(self.settings["div1"] + 2):
            self.lowlegChainPos.append(
                vector.linearlyInterpolate(self.guide.pos["knee"],
                                           self.guide.pos["ankle"],
                                           blend=i))
            i = i + ii

        self.lowlegTwistChain = primitive.add2DChain(
            self.root, self.getName("lowlegTwist%s_jnt"), self.lowlegChainPos,
            self.normal, False, self.WIP)
        pm.parent(self.lowlegTwistChain[0], self.mid_ctl)

        # Hand Aux chain and nonroll
        self.auxChainPos = []
        ii = .5
        i = 0.0
        for p in range(3):
            self.auxChainPos.append(
                vector.linearlyInterpolate(self.guide.pos["ankle"],
                                           self.guide.pos["eff"],
                                           blend=i))
            i = i + ii
        t = self.root.getMatrix(worldSpace=True)

        self.aux_npo = primitive.addTransform(self.root,
                                              self.getName("aux_npo"), t)
        self.auxTwistChain = primitive.add2DChain(
            self.aux_npo, self.getName("auxTwist%s_jnt"),
            self.lowlegChainPos[:3], self.normal, False, self.WIP)
        # Non Roll join ref ---------------------------------
        self.uplegRollRef = primitive.add2DChain(
            self.root, self.getName("uplegRollRef%s_jnt"),
            self.uplegChainPos[:2], self.normal, False, self.WIP)

        self.lowlegRollRef = primitive.add2DChain(
            self.aux_npo, self.getName("lowlegRollRef%s_jnt"),
            self.lowlegChainPos[:2], self.normal, False, self.WIP)
        # Divisions ----------------------------------------
        # We have at least one division at the start, the end and one for the
        # elbow. + 2 for knee angle control
        self.divisions = self.settings["div0"] + self.settings["div1"] + 4

        self.div_cns = []
        for i in range(self.divisions):

            div_cns = primitive.addTransform(self.root_ctl,
                                             self.getName("div%s_loc" % i))

            self.div_cns.append(div_cns)

            self.jnt_pos.append([div_cns, i])

        # End reference ------------------------------------
        # To help the deformation on the ankle
        self.end_ref = primitive.addTransform(self.eff_loc,
                                              self.getName("end_ref"), m)
        for a in "xyz":
            self.end_ref.attr("s%s" % a).set(1.0)
        if self.negate:
            self.end_ref.attr("ry").set(-180.0)
        self.jnt_pos.append([self.end_ref, 'end'])

        # Tangent controls
        t = transform.getInterpolateTransformMatrix(self.fk_ctl[0],
                                                    self.tws1A_npo, .5)
        self.uplegTangentA_loc = primitive.addTransform(
            self.root_ctl, self.getName("uplegTangentA_loc"),
            self.fk_ctl[0].getMatrix(worldSpace=True))

        self.uplegTangentA_npo = primitive.addTransform(
            self.uplegTangentA_loc, self.getName("uplegTangentA_npo"), t)

        self.uplegTangentA_ctl = self.addCtl(self.uplegTangentA_npo,
                                             "uplegTangentA_ctl",
                                             t,
                                             self.color_ik,
                                             "circle",
                                             w=self.size * .2,
                                             ro=datatypes.Vector(
                                                 0, 0, 1.570796),
                                             tp=self.mid_ctl)

        if self.negate:
            self.uplegTangentA_npo.rz.set(180)
            self.uplegTangentA_npo.sz.set(-1)
        attribute.setKeyableAttributes(self.uplegTangentA_ctl, self.t_params)

        t = transform.getInterpolateTransformMatrix(self.fk_ctl[0],
                                                    self.tws1A_npo, .9)
        self.uplegTangentB_npo = primitive.addTransform(
            self.tws1A_loc, self.getName("uplegTangentB_npo"), t)

        self.uplegTangentB_ctl = self.addCtl(self.uplegTangentB_npo,
                                             "uplegTangentB_ctl",
                                             t,
                                             self.color_ik,
                                             "circle",
                                             w=self.size * .1,
                                             ro=datatypes.Vector(
                                                 0, 0, 1.570796),
                                             tp=self.mid_ctl)

        if self.negate:
            self.uplegTangentB_npo.rz.set(180)
            self.uplegTangentB_npo.sz.set(-1)
        attribute.setKeyableAttributes(self.uplegTangentB_ctl, self.t_params)

        tC = self.tws1B_npo.getMatrix(worldSpace=True)
        tC = transform.setMatrixPosition(tC, self.guide.apos[2])
        t = transform.getInterpolateTransformMatrix(self.tws1B_npo, tC, .1)
        self.lowlegTangentA_npo = primitive.addTransform(
            self.tws1B_loc, self.getName("lowlegTangentA_npo"), t)

        self.lowlegTangentA_ctl = self.addCtl(self.lowlegTangentA_npo,
                                              "lowlegTangentA_ctl",
                                              t,
                                              self.color_ik,
                                              "circle",
                                              w=self.size * .1,
                                              ro=datatypes.Vector(
                                                  0, 0, 1.570796),
                                              tp=self.mid_ctl)

        if self.negate:
            self.lowlegTangentA_npo.rz.set(180)
            self.lowlegTangentA_npo.sz.set(-1)
        attribute.setKeyableAttributes(self.lowlegTangentA_ctl, self.t_params)

        t = transform.getInterpolateTransformMatrix(self.tws1B_npo, tC, .5)

        self.lowlegTangentB_loc = primitive.addTransform(
            self.root, self.getName("lowlegTangentB_loc"), tC)

        self.lowlegTangentB_npo = primitive.addTransform(
            self.lowlegTangentB_loc, self.getName("lowlegTangentB_npo"), t)

        self.lowlegTangentB_ctl = self.addCtl(self.lowlegTangentB_npo,
                                              "lowlegTangentB_ctl",
                                              t,
                                              self.color_ik,
                                              "circle",
                                              w=self.size * .2,
                                              ro=datatypes.Vector(
                                                  0, 0, 1.570796),
                                              tp=self.mid_ctl)

        if self.negate:
            self.lowlegTangentB_npo.rz.set(180)
            self.lowlegTangentB_npo.sz.set(-1)
        attribute.setKeyableAttributes(self.lowlegTangentB_ctl, self.t_params)

        t = self.mid_ctl.getMatrix(worldSpace=True)
        self.kneeTangent_npo = primitive.addTransform(
            self.mid_ctl, self.getName("kneeTangent_npo"), t)

        self.kneeTangent_ctl = self.addCtl(self.kneeTangent_npo,
                                           "kneeTangent_ctl",
                                           t,
                                           self.color_fk,
                                           "circle",
                                           w=self.size * .25,
                                           ro=datatypes.Vector(0, 0, 1.570796),
                                           tp=self.mid_ctl)

        if self.negate:
            self.kneeTangent_npo.rz.set(180)
            self.kneeTangent_npo.sz.set(-1)
        attribute.setKeyableAttributes(self.kneeTangent_ctl, self.t_params)

        # match IK FK references
        self.match_fk0_off = self.add_match_ref(self.fk_ctl[1], self.root,
                                                "matchFk0_npo", False)

        self.match_fk0 = self.add_match_ref(self.fk_ctl[0], self.match_fk0_off,
                                            "fk0_mth")

        self.match_fk1_off = self.add_match_ref(self.fk_ctl[2], self.root,
                                                "matchFk1_npo", False)

        self.match_fk1 = self.add_match_ref(self.fk_ctl[1], self.match_fk1_off,
                                            "fk1_mth")

        self.match_fk2 = self.add_match_ref(self.fk_ctl[2], self.ik_ctl,
                                            "fk2_mth")

        self.match_ik = self.add_match_ref(self.ik_ctl, self.fk2_ctl, "ik_mth")

        self.match_ikUpv = self.add_match_ref(self.upv_ctl, self.fk0_ctl,
                                              "upv_mth")

        # add visual reference
        self.line_ref = icon.connection_display_curve(
            self.getName("visalRef"), [self.upv_ctl, self.mid_ctl])
示例#11
0
    def addObjects(self):
        """Add all the objects needed to create the component."""

        t = transform.getTransformLookingAt(self.guide.apos[0],
                                            self.guide.apos[1],
                                            self.guide.blades["blade"].z * -1,
                                            "yx", self.negate)

        t2 = transform.setMatrixPosition(t, self.guide.apos[1])

        int_t = t
        self.preiviousCtlTag = self.parentCtlTag

        # FK Controlers ------------------------------------
        self.fk_ctl = []
        self.fk_npo = []
        parentctl = self.root
        blend_increment = 1.0 / (self.settings["division"] - 1)
        blend_val = 0.0
        for i in range(self.settings["division"]):
            fk_npo = primitive.addTransform(parentctl,
                                            self.getName("fk%s_npo" % (i)),
                                            int_t)

            self.fk_npo.append(fk_npo)

            fk_ctl = self.addCtl(fk_npo,
                                 "fk%s_ctl" % (i),
                                 int_t,
                                 self.color_fk,
                                 "cube",
                                 w=self.size,
                                 h=self.size * .05,
                                 d=self.size,
                                 tp=self.preiviousCtlTag)

            self.fk_ctl.append(fk_ctl)
            self.preiviousCtlTag = fk_ctl

            parentctl = fk_ctl

            blend_val = blend_val + blend_increment

            int_t = transform.getInterpolateTransformMatrix(t,
                                                            t2,
                                                            blend=blend_val)

        for x in self.fk_ctl:
            attribute.setKeyableAttributes(x)
            attribute.setRotOrder(x, "ZXY")
            attribute.setInvertMirror(x, ["tx", "rz", "ry"])

        # Ik Controlers ------------------------------------

        self.ik0_npo = primitive.addTransform(self.fk_ctl[0],
                                              self.getName("ik0_npo"), t)
        self.ik0_ctl = self.addCtl(self.ik0_npo,
                                   "ik0_ctl",
                                   t,
                                   self.color_ik,
                                   "compas",
                                   w=self.size,
                                   tp=self.parentCtlTag)

        attribute.setKeyableAttributes(self.ik0_ctl, self.tr_params)
        attribute.setRotOrder(self.ik0_ctl, "ZXY")
        attribute.setInvertMirror(self.ik0_ctl, ["tx", "ry", "rz"])

        t = transform.setMatrixPosition(t, self.guide.apos[1])
        self.ik1_npo = primitive.addTransform(self.fk_ctl[-1],
                                              self.getName("ik1_npo"), t)

        self.ik1_ctl = self.addCtl(self.ik1_npo,
                                   "ik1_ctl",
                                   t,
                                   self.color_ik,
                                   "compas",
                                   w=self.size,
                                   tp=self.ik0_ctl)

        attribute.setKeyableAttributes(self.ik1_ctl, self.tr_params)
        attribute.setRotOrder(self.ik1_ctl, "ZXY")
        attribute.setInvertMirror(self.ik1_ctl, ["tx", "ry", "rz"])

        # Tangent controllers -------------------------------
        if self.settings["centralTangent"]:
            vec_pos = vector.linearlyInterpolate(self.guide.apos[0],
                                                 self.guide.apos[1], .33)
            t = transform.setMatrixPosition(t, vec_pos)

            self.tan0_npo = primitive.addTransform(self.ik0_ctl,
                                                   self.getName("tan0_npo"), t)

            self.tan0_off = primitive.addTransform(self.tan0_npo,
                                                   self.getName("tan0_off"), t)

            self.tan0_ctl = self.addCtl(self.tan0_off,
                                        "tan0_ctl",
                                        t,
                                        self.color_ik,
                                        "sphere",
                                        w=self.size * .1,
                                        tp=self.ik0_ctl)

            attribute.setKeyableAttributes(self.tan0_ctl, self.t_params)
            vec_pos = vector.linearlyInterpolate(self.guide.apos[0],
                                                 self.guide.apos[1], .66)

            t = transform.setMatrixPosition(t, vec_pos)

            self.tan1_npo = primitive.addTransform(self.ik1_ctl,
                                                   self.getName("tan1_npo"), t)

            self.tan1_off = primitive.addTransform(self.tan1_npo,
                                                   self.getName("tan1_off"), t)

            self.tan1_ctl = self.addCtl(self.tan1_off,
                                        "tan1_ctl",
                                        t,
                                        self.color_ik,
                                        "sphere",
                                        w=self.size * .1,
                                        tp=self.ik0_ctl)

            attribute.setKeyableAttributes(self.tan1_ctl, self.t_params)

            # Tangent mid control
            vec_pos = vector.linearlyInterpolate(self.guide.apos[0],
                                                 self.guide.apos[1], .5)
            t = transform.setMatrixPosition(t, vec_pos)

            self.tan_npo = primitive.addTransform(self.tan0_npo,
                                                  self.getName("tan_npo"), t)

            self.tan_ctl = self.addCtl(self.tan_npo,
                                       "tan_ctl",
                                       t,
                                       self.color_fk,
                                       "sphere",
                                       w=self.size * .2,
                                       tp=self.ik1_ctl)

            attribute.setKeyableAttributes(self.tan_ctl, self.t_params)
            attribute.setInvertMirror(self.tan_ctl, ["tx"])

        else:
            vec_pos = vector.linearlyInterpolate(self.guide.apos[0],
                                                 self.guide.apos[1], .33)

            t = transform.setMatrixPosition(t, vec_pos)

            self.tan0_npo = primitive.addTransform(self.ik0_ctl,
                                                   self.getName("tan0_npo"), t)

            self.tan0_ctl = self.addCtl(self.tan0_npo,
                                        "tan0_ctl",
                                        t,
                                        self.color_ik,
                                        "sphere",
                                        w=self.size * .2,
                                        tp=self.ik0_ctl)

            attribute.setKeyableAttributes(self.tan0_ctl, self.t_params)

            vec_pos = vector.linearlyInterpolate(self.guide.apos[0],
                                                 self.guide.apos[1], .66)

            t = transform.setMatrixPosition(t, vec_pos)

            self.tan1_npo = primitive.addTransform(self.ik1_ctl,
                                                   self.getName("tan1_npo"), t)

            self.tan1_ctl = self.addCtl(self.tan1_npo,
                                        "tan1_ctl",
                                        t,
                                        self.color_ik,
                                        "sphere",
                                        w=self.size * .2,
                                        tp=self.ik1_ctl)

            attribute.setKeyableAttributes(self.tan1_ctl, self.t_params)

        attribute.setInvertMirror(self.tan0_ctl, ["tx"])
        attribute.setInvertMirror(self.tan1_ctl, ["tx"])

        # Curves -------------------------------------------
        self.mst_crv = curve.addCnsCurve(
            self.root, self.getName("mst_crv"),
            [self.ik0_ctl, self.tan0_ctl, self.tan1_ctl, self.ik1_ctl], 3)
        self.slv_crv = curve.addCurve(self.root, self.getName("slv_crv"),
                                      [datatypes.Vector()] * 10, False, 3)
        self.mst_crv.setAttr("visibility", False)
        self.slv_crv.setAttr("visibility", False)

        # Division -----------------------------------------
        # The user only define how many intermediate division he wants.
        # First and last divisions are an obligation.
        parentdiv = self.root
        parentctl = self.root
        self.div_cns = []
        self.scl_transforms = []
        self.twister = []
        self.ref_twist = []

        t = transform.getTransformLookingAt(self.guide.apos[0],
                                            self.guide.apos[1],
                                            self.guide.blades["blade"].z * -1,
                                            "yx", self.negate)

        parent_twistRef = primitive.addTransform(
            self.root, self.getName("reference"),
            transform.getTransform(self.root))

        self.jointList = []
        self.preiviousCtlTag = self.parentCtlTag
        for i in range(self.settings["division"]):

            # References
            div_cns = primitive.addTransform(parentdiv,
                                             self.getName("%s_cns" % i))
            pm.setAttr(div_cns + ".inheritsTransform", False)
            self.div_cns.append(div_cns)
            parentdiv = div_cns

            parentctl = div_cns
            scl_ref = primitive.addTransform(parentctl,
                                             self.getName("%s_scl_ref" % i),
                                             transform.getTransform(parentctl))

            self.scl_transforms.append(scl_ref)

            # Deformers (Shadow)
            self.jnt_pos.append([scl_ref, i])

            # Twist references (This objects will replace the spinlookup
            # slerp solver behavior)
            t = transform.getTransformLookingAt(
                self.guide.apos[0], self.guide.apos[1],
                self.guide.blades["blade"].z * -1, "yx", self.negate)

            twister = primitive.addTransform(parent_twistRef,
                                             self.getName("%s_rot_ref" % i), t)

            ref_twist = primitive.addTransform(parent_twistRef,
                                               self.getName("%s_pos_ref" % i),
                                               t)

            ref_twist.setTranslation(datatypes.Vector(1.0, 0, 0),
                                     space="preTransform")

            self.twister.append(twister)
            self.ref_twist.append(ref_twist)

        # Connections (Hooks) ------------------------------
        self.cnx0 = primitive.addTransform(self.root, self.getName("0_cnx"))
        self.cnx1 = primitive.addTransform(self.root, self.getName("1_cnx"))
示例#12
0
    def addObjects(self):
        """Add all the objects needed to create the component."""

        self.up_axis = pm.upAxis(q=True, axis=True)

        # Auto bend with position controls  -------------------
        if self.settings["autoBend"]:
            self.autoBendChain = primitive.add2DChain(
                self.root, self.getName("autoBend%s_jnt"),
                [self.guide.apos[1], self.guide.apos[-2]],
                self.guide.blades["blade"].z * -1, False, True)

            for j in self.autoBendChain:
                j.drawStyle.set(2)

        # Ik Controlers ------------------------------------
        if self.settings["IKWorldOri"]:
            t = datatypes.TransformationMatrix()
            t = transform.setMatrixPosition(t, self.guide.apos[1])
        else:
            t = transform.getTransformLookingAt(
                self.guide.apos[1], self.guide.apos[-2],
                self.guide.blades["blade"].z * -1, "yx", self.negate)
        self.ik_off = primitive.addTransform(self.root, self.getName("ik_off"),
                                             t)
        # handle Z up orientation offset
        if self.up_axis == "z" and self.settings["IKWorldOri"]:
            self.ik_off.rx.set(90)
            t = transform.getTransform(self.ik_off)

        self.ik0_npo = primitive.addTransform(self.ik_off,
                                              self.getName("ik0_npo"), t)

        self.ik0_ctl = self.addCtl(self.ik0_npo,
                                   "ik0_ctl",
                                   t,
                                   self.color_ik,
                                   "compas",
                                   w=self.size,
                                   tp=self.parentCtlTag)

        attribute.setKeyableAttributes(self.ik0_ctl, self.tr_params)
        attribute.setRotOrder(self.ik0_ctl, "ZXY")
        attribute.setInvertMirror(self.ik0_ctl, ["tx", "ry", "rz"])

        # pelvis
        self.length0 = vector.getDistance(self.guide.apos[0],
                                          self.guide.apos[1])
        vec_po = datatypes.Vector(0, .5 * self.length0 * -1, 0)
        self.pelvis_npo = primitive.addTransform(self.ik0_ctl,
                                                 self.getName("pelvis_npo"), t)

        self.pelvis_ctl = self.addCtl(self.pelvis_npo,
                                      "pelvis_ctl",
                                      t,
                                      self.color_ik,
                                      "cube",
                                      h=self.length0,
                                      w=self.size * .1,
                                      d=self.size * .1,
                                      po=vec_po,
                                      tp=self.parentCtlTag)
        self.pelvis_lvl = primitive.addTransform(
            self.pelvis_ctl, self.getName("pelvis_lvl"),
            transform.setMatrixPosition(t, self.guide.apos[0]))
        self.jnt_pos.append([self.pelvis_lvl, "pelvis"])

        t = transform.setMatrixPosition(t, self.guide.apos[-2])
        if self.settings["autoBend"]:
            self.autoBend_npo = primitive.addTransform(
                self.root, self.getName("spinePosition_npo"), t)

            self.autoBend_ctl = self.addCtl(self.autoBend_npo,
                                            "spinePosition_ctl",
                                            t,
                                            self.color_ik,
                                            "square",
                                            w=self.size,
                                            d=.3 * self.size,
                                            tp=self.parentCtlTag)

            attribute.setKeyableAttributes(self.autoBend_ctl,
                                           ["tx", "ty", "tz", "ry"])

            attribute.setInvertMirror(self.autoBend_ctl, ["tx", "ry"])

            self.ik1_npo = primitive.addTransform(self.autoBendChain[0],
                                                  self.getName("ik1_npo"), t)

            self.ik1autoRot_lvl = primitive.addTransform(
                self.ik1_npo, self.getName("ik1autoRot_lvl"), t)

            self.ik1_ctl = self.addCtl(self.ik1autoRot_lvl,
                                       "ik1_ctl",
                                       t,
                                       self.color_ik,
                                       "compas",
                                       w=self.size,
                                       tp=self.autoBend_ctl)
        else:
            t = transform.setMatrixPosition(t, self.guide.apos[-2])
            self.ik1_npo = primitive.addTransform(self.root,
                                                  self.getName("ik1_npo"), t)

            self.ik1_ctl = self.addCtl(self.ik1_npo,
                                       "ik1_ctl",
                                       t,
                                       self.color_ik,
                                       "compas",
                                       w=self.size,
                                       tp=self.ik0_ctl)

        attribute.setKeyableAttributes(self.ik1_ctl, self.tr_params)
        attribute.setRotOrder(self.ik1_ctl, "ZXY")
        attribute.setInvertMirror(self.ik1_ctl, ["tx", "ry", "rz"])

        # Tangent controllers -------------------------------
        if self.settings["centralTangent"]:
            vec_pos = self.guide.pos["tan0"]
            t = transform.setMatrixPosition(t, vec_pos)

            self.tan0_npo = primitive.addTransform(self.ik0_ctl,
                                                   self.getName("tan0_npo"), t)

            self.tan0_off = primitive.addTransform(self.tan0_npo,
                                                   self.getName("tan0_off"), t)

            self.tan0_ctl = self.addCtl(self.tan0_off,
                                        "tan0_ctl",
                                        t,
                                        self.color_ik,
                                        "sphere",
                                        w=self.size * .1,
                                        tp=self.ik0_ctl)

            attribute.setKeyableAttributes(self.tan0_ctl, self.t_params)
            vec_pos = self.guide.pos["tan1"]
            t = transform.setMatrixPosition(t, vec_pos)

            self.tan1_npo = primitive.addTransform(self.ik1_ctl,
                                                   self.getName("tan1_npo"), t)

            self.tan1_off = primitive.addTransform(self.tan1_npo,
                                                   self.getName("tan1_off"), t)

            self.tan1_ctl = self.addCtl(self.tan1_off,
                                        "tan1_ctl",
                                        t,
                                        self.color_ik,
                                        "sphere",
                                        w=self.size * .1,
                                        tp=self.ik0_ctl)

            attribute.setKeyableAttributes(self.tan1_ctl, self.t_params)

            # Tangent mid control
            vec_pos = vector.linearlyInterpolate(self.guide.apos[1],
                                                 self.guide.apos[-2], .5)
            t = transform.setMatrixPosition(t, vec_pos)

            self.tan_npo = primitive.addTransform(self.tan0_npo,
                                                  self.getName("tan_npo"), t)

            self.tan_ctl = self.addCtl(self.tan_npo,
                                       "tan_ctl",
                                       t,
                                       self.color_fk,
                                       "sphere",
                                       w=self.size * .2,
                                       tp=self.ik1_ctl)

            attribute.setKeyableAttributes(self.tan_ctl, self.t_params)
            attribute.setInvertMirror(self.tan_ctl, ["tx"])

        else:
            vec_pos = self.guide.pos["tan0"]
            t = transform.setMatrixPosition(t, vec_pos)

            self.tan0_npo = primitive.addTransform(self.ik0_ctl,
                                                   self.getName("tan0_npo"), t)

            self.tan0_ctl = self.addCtl(self.tan0_npo,
                                        "tan0_ctl",
                                        t,
                                        self.color_ik,
                                        "sphere",
                                        w=self.size * .2,
                                        tp=self.ik0_ctl)

            attribute.setKeyableAttributes(self.tan0_ctl, self.t_params)

            vec_pos = self.guide.pos["tan1"]
            t = transform.setMatrixPosition(t, vec_pos)

            self.tan1_npo = primitive.addTransform(self.ik1_ctl,
                                                   self.getName("tan1_npo"), t)

            self.tan1_ctl = self.addCtl(self.tan1_npo,
                                        "tan1_ctl",
                                        t,
                                        self.color_ik,
                                        "sphere",
                                        w=self.size * .2,
                                        tp=self.ik1_ctl)

            attribute.setKeyableAttributes(self.tan1_ctl, self.t_params)

        attribute.setInvertMirror(self.tan0_ctl, ["tx"])
        attribute.setInvertMirror(self.tan1_ctl, ["tx"])

        # Curves -------------------------------------------
        self.mst_crv = curve.addCnsCurve(
            self.root, self.getName("mst_crv"),
            [self.ik0_ctl, self.tan0_ctl, self.tan1_ctl, self.ik1_ctl], 3)
        self.slv_crv = curve.addCurve(self.root, self.getName("slv_crv"),
                                      [datatypes.Vector()] * 10, False, 3)
        self.mst_crv.setAttr("visibility", False)
        self.slv_crv.setAttr("visibility", False)

        # Division -----------------------------------------
        # The user only define how many intermediate division he wants.
        # First and last divisions are an obligation.
        parentdiv = self.root
        parentctl = self.root
        self.div_cns = []
        self.fk_ctl = []
        self.fk_npo = []
        self.scl_transforms = []
        self.twister = []
        self.ref_twist = []

        t = transform.getTransformLookingAt(self.guide.apos[1],
                                            self.guide.apos[-2],
                                            self.guide.blades["blade"].z * -1,
                                            "yx", self.negate)

        parent_twistRef = primitive.addTransform(
            self.root, self.getName("reference"),
            transform.getTransform(self.root))

        self.jointList = []
        self.preiviousCtlTag = self.parentCtlTag

        for i in range(self.settings["division"]):

            # References
            div_cns = primitive.addTransform(parentdiv,
                                             self.getName("%s_cns" % i))
            pm.setAttr(div_cns + ".inheritsTransform", False)
            self.div_cns.append(div_cns)
            parentdiv = div_cns

            t = transform.getTransform(parentctl)

            fk_npo = primitive.addTransform(parentctl,
                                            self.getName("fk%s_npo" % (i)), t)

            fk_ctl = self.addCtl(fk_npo,
                                 "fk%s_ctl" % (i),
                                 transform.getTransform(parentctl),
                                 self.color_fk,
                                 "cube",
                                 w=self.size,
                                 h=self.size * .05,
                                 d=self.size,
                                 tp=self.preiviousCtlTag)

            attribute.setKeyableAttributes(self.fk_ctl)
            attribute.setRotOrder(fk_ctl, "ZXY")
            self.fk_ctl.append(fk_ctl)
            self.preiviousCtlTag = fk_ctl

            self.fk_npo.append(fk_npo)
            parentctl = fk_ctl
            if i == self.settings["division"] - 1:
                t = transform.getTransformLookingAt(
                    self.guide.pos["spineTop"], self.guide.pos["chest"],
                    self.guide.blades["blade"].z * -1, "yx", False)
                scl_ref_parent = self.root
            else:
                t = transform.getTransform(parentctl)
                scl_ref_parent = parentctl

            scl_ref = primitive.addTransform(scl_ref_parent,
                                             self.getName("%s_scl_ref" % i), t)

            self.scl_transforms.append(scl_ref)

            # Deformers (Shadow)
            self.jnt_pos.append([scl_ref, "spine_" + str(i + 1).zfill(2)])

            # Twist references (This objects will replace the spinlookup
            # slerp solver behavior)
            t = transform.getTransformLookingAt(
                self.guide.apos[0], self.guide.apos[1],
                self.guide.blades["blade"].z * -1, "yx", self.negate)

            twister = primitive.addTransform(parent_twistRef,
                                             self.getName("%s_rot_ref" % i), t)

            ref_twist = primitive.addTransform(parent_twistRef,
                                               self.getName("%s_pos_ref" % i),
                                               t)
            ref_twist.setTranslation(datatypes.Vector(1.0, 0, 0),
                                     space="preTransform")

            self.twister.append(twister)
            self.ref_twist.append(ref_twist)

            for x in self.fk_ctl[:-1]:
                attribute.setInvertMirror(x, ["tx", "rz", "ry"])

        # Connections (Hooks) ------------------------------
        self.cnx0 = primitive.addTransform(self.root, self.getName("0_cnx"))
        self.cnx1 = primitive.addTransform(self.root, self.getName("1_cnx"))
        self.jnt_pos.append([self.cnx1, "spine_" + str(i + 2).zfill(2)])