示例#1
0
    def test_simple(self, config_mock, savefig_mock):
        config_mock.return_value = self.config
        amino_csv = StringIO("""\
seed,region,q-cutoff,query.aa.pos,refseq.aa.pos,A,C,D,E,F,G,H,I,K,L,M,N,P,Q,R,S,T,V,W,Y,*
R1-seed,R1,15,100,1,0,5,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
R1-seed,R1,15,101,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,5,0,0,0,0
R1-seed,R1,15,102,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,5,0,0,0,0,0,0
""")
        expected_scores = """\
project,region,seed,q.cut,min.coverage,which.key.pos,off.score,on.score
R1,R1,R1-seed,15,5,1,-1,1
R1-and-R2,R1,R1-seed,15,5,1,-1,1
"""
        scores_csv = StringIO()
        amino_csv.name = 'E1234.amino.csv'
        expected_calls = [
            call('E1234.R1.R1.png'),
            call('E1234.R1-and-R2.R1.png')
        ]

        coverage_plot(amino_csv,
                      coverage_scores_csv=scores_csv,
                      coverage_maps_prefix='E1234')

        self.assertEqual(expected_calls, savefig_mock.mock_calls)
        self.assertEqual(expected_scores, scores_csv.getvalue())
示例#2
0
    def test_simple(self, config_mock, savefig_mock):
        config_mock.return_value = self.config
        amino_csv = StringIO("""\
seed,region,q-cutoff,query.aa.pos,refseq.aa.pos,A,C,D,E,F,G,H,I,K,L,M,N,P,Q,R,S,T,V,W,Y,*
R1-seed,R1,15,100,1,0,5,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
R1-seed,R1,15,101,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,5,0,0,0,0
R1-seed,R1,15,102,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,5,0,0,0,0,0,0
""")
        expected_scores = """\
project,region,seed,q.cut,min.coverage,which.key.pos,off.score,on.score
R1,R1,R1-seed,15,5,1,-1,1
R1-and-R2,R1,R1-seed,15,5,1,-1,1
"""
        scores_csv = StringIO()
        amino_csv.name = 'E1234.amino.csv'
        expected_calls = [call('E1234.R1.R1.png'),
                          call('E1234.R1-and-R2.R1.png')]

        coverage_plot(amino_csv, coverage_scores_csv=scores_csv)

        self.assertEqual(expected_calls, savefig_mock.mock_calls)
        self.assertEqual(expected_scores, scores_csv.getvalue())
示例#3
0
def process_sample(sample_index, run_info, data_path, pssm):
    """ Process a single sample.

    :param sample_index: which sample to process from the session JSON
    :param run_info: run parameters loaded from the session JSON
    :param str data_path: the root folder for all BaseSpace data
    :param pssm: the pssm library for running G2P analysis
    """
    scratch_path = os.path.join(data_path, 'scratch')
    sample_info = run_info.samples[sample_index]
    sample_id = sample_info['Id']
    sample_name = sample_info['Name']
    sample_dir = os.path.join(data_path, 'input', 'samples', sample_id, 'Data',
                              'Intensities', 'BaseCalls')
    if not os.path.exists(sample_dir):
        sample_dir = os.path.join(data_path, 'input', 'samples', sample_id)
    sample_path = None
    for root, _dirs, files in os.walk(sample_dir):
        sample_paths = fnmatch.filter(files, '*_R1_*')
        if sample_paths:
            sample_path = os.path.join(root, sample_paths[0])
            break
    if sample_path is None:
        raise RuntimeError(
            'No R1 file found for sample id {}.'.format(sample_id))
    sample_path2 = sample_path.replace('_R1_', '_R2_')
    if not os.path.exists(sample_path2):
        raise RuntimeError('R2 file missing for sample id {}: {!r}.'.format(
            sample_id, sample_path2))
    logger.info('Processing sample %s (%d of %d): %s (%s).', sample_id,
                sample_index + 1, len(run_info.samples), sample_name,
                sample_path)

    sample_out_path = create_app_result(data_path,
                                        run_info,
                                        sample_info,
                                        description='Mapping results',
                                        suffix='_QC')

    sample_scratch_path = os.path.join(scratch_path, sample_name)
    makedirs(sample_scratch_path)

    censored_path1 = os.path.join(sample_scratch_path, 'censored1.fastq')
    read_summary_path1 = os.path.join(sample_scratch_path, 'read1_summary.csv')
    censor_sample(sample_path, os.path.join(scratch_path, 'bad_cycles.csv'),
                  censored_path1, read_summary_path1)
    censored_path2 = os.path.join(sample_scratch_path, 'censored2.fastq')
    read_summary_path2 = os.path.join(sample_scratch_path, 'read2_summary.csv')
    censor_sample(sample_path2, os.path.join(scratch_path, 'bad_cycles.csv'),
                  censored_path2, read_summary_path2)

    logger.info('Running prelim_map (%d of %d).', sample_index + 1,
                len(run_info.samples))
    with open(os.path.join(sample_scratch_path, 'prelim.csv'),
              'wb') as prelim_csv:
        prelim_map(censored_path1, censored_path2, prelim_csv)

    logger.info('Running remap (%d of %d).', sample_index + 1,
                len(run_info.samples))
    with open(os.path.join(sample_scratch_path, 'prelim.csv'), 'rU') as prelim_csv, \
            open(os.path.join(sample_scratch_path, 'remap.csv'), 'wb') as remap_csv, \
            open(os.path.join(sample_out_path, 'remap_counts.csv'), 'wb') as counts_csv, \
            open(os.path.join(sample_out_path, 'remap_conseq.csv'), 'wb') as conseq_csv, \
            open(os.path.join(sample_out_path, 'unmapped1.fastq'), 'w') as unmapped1, \
            open(os.path.join(sample_out_path, 'unmapped2.fastq'), 'w') as unmapped2:

        remap(censored_path1,
              censored_path2,
              prelim_csv,
              remap_csv,
              counts_csv,
              conseq_csv,
              unmapped1,
              unmapped2,
              sample_scratch_path,
              nthreads=1)

    logger.info('Running sam2aln (%d of %d).', sample_index + 1,
                len(run_info.samples))
    with open(os.path.join(sample_scratch_path, 'remap.csv'), 'rU') as remap_csv, \
            open(os.path.join(sample_scratch_path, 'aligned.csv'), 'wb') as aligned_csv, \
            open(os.path.join(sample_out_path, 'conseq_ins.csv'), 'wb') as insert_csv, \
            open(os.path.join(sample_out_path, 'failed_read.csv'), 'wb') as failed_csv:

        sam2aln(remap_csv, aligned_csv, insert_csv, failed_csv)

    logger.info('Running aln2counts (%d of %d).', sample_index + 1,
                len(run_info.samples))
    with open(os.path.join(sample_scratch_path, 'aligned.csv'), 'rU') as aligned_csv, \
            open(os.path.join(sample_out_path, 'nuc.csv'), 'wb') as nuc_csv, \
            open(os.path.join(sample_out_path, 'amino.csv'), 'wb') as amino_csv, \
            open(os.path.join(sample_out_path, 'coord_ins.csv'), 'wb') as coord_ins_csv, \
            open(os.path.join(sample_out_path, 'conseq.csv'), 'wb') as conseq_csv, \
            open(os.path.join(sample_out_path, 'failed_align.csv'), 'wb') as failed_align_csv, \
            open(os.path.join(sample_out_path, 'nuc_variants.csv'), 'wb') as nuc_variants_csv, \
            open(os.path.join(sample_scratch_path, 'coverage_summary.csv'), 'wb') as coverage_summary_csv:

        aln2counts(aligned_csv,
                   nuc_csv,
                   amino_csv,
                   coord_ins_csv,
                   conseq_csv,
                   failed_align_csv,
                   nuc_variants_csv,
                   coverage_summary_csv=coverage_summary_csv)

    logger.info('Running coverage_plots (%d of %d).', sample_index + 1,
                len(run_info.samples))
    coverage_path = os.path.join(sample_out_path, 'coverage')
    with open(os.path.join(sample_out_path, 'amino.csv'), 'rU') as amino_csv, \
            open(os.path.join(sample_out_path, 'coverage_scores.csv'), 'w') as coverage_scores_csv:
        coverage_plot(amino_csv,
                      coverage_scores_csv,
                      path_prefix=coverage_path)

    with open(os.path.join(sample_out_path, 'coverage_scores.csv'),
              'rU') as coverage_scores_csv:
        reader = csv.DictReader(coverage_scores_csv)
        is_v3loop_good = False
        for row in reader:
            if row['region'] == 'V3LOOP':
                is_v3loop_good = row['on.score'] == '4'
                break

    if is_v3loop_good:
        logger.info('Running sam_g2p (%d of %d).', sample_index + 1,
                    len(run_info.samples))
        g2p_path = create_app_result(data_path,
                                     run_info,
                                     sample_info,
                                     description='Geno To Pheno results',
                                     suffix='_G2P')
        with open(os.path.join(sample_scratch_path, 'remap.csv'), 'rU') as remap_csv, \
                open(os.path.join(sample_out_path, 'nuc.csv'), 'rU') as nuc_csv, \
                open(os.path.join(g2p_path, 'g2p.csv'), 'wb') as g2p_csv, \
                open(os.path.join(g2p_path, 'g2p_summary.csv'), 'wb') as g2p_summary_csv:

            sam_g2p(pssm=pssm,
                    remap_csv=remap_csv,
                    nuc_csv=nuc_csv,
                    g2p_csv=g2p_csv,
                    g2p_summary_csv=g2p_summary_csv,
                    min_count=DEFAULT_MIN_COUNT)
示例#4
0
def process_sample(sample_index, run_info, data_path, pssm):
    """ Process a single sample.

    :param sample_index: which sample to process from the session JSON
    :param run_info: run parameters loaded from the session JSON
    :param str data_path: the root folder for all BaseSpace data
    :param pssm: the pssm library for running G2P analysis
    """
    scratch_path = os.path.join(data_path, 'scratch')
    sample_info = run_info.samples[sample_index]
    sample_id = sample_info['Id']
    sample_name = sample_info['Name']
    sample_dir = os.path.join(data_path,
                              'input',
                              'samples',
                              sample_id,
                              'Data',
                              'Intensities',
                              'BaseCalls')
    if not os.path.exists(sample_dir):
        sample_dir = os.path.join(data_path,
                                  'input',
                                  'samples',
                                  sample_id)
    sample_path = None
    for root, _dirs, files in os.walk(sample_dir):
        sample_paths = fnmatch.filter(files, '*_R1_*')
        if sample_paths:
            sample_path = os.path.join(root, sample_paths[0])
            break
    if sample_path is None:
        raise RuntimeError('No R1 file found for sample id {}.'.format(sample_id))
    sample_path2 = sample_path.replace('_R1_', '_R2_')
    if not os.path.exists(sample_path2):
        raise RuntimeError('R2 file missing for sample id {}: {!r}.'.format(
            sample_id,
            sample_path2))
    logger.info('Processing sample %s (%d of %d): %s (%s).',
                sample_id,
                sample_index+1,
                len(run_info.samples),
                sample_name,
                sample_path)

    sample_out_path = create_app_result(data_path,
                                        run_info,
                                        sample_info,
                                        description='Mapping results',
                                        suffix='_QC')

    sample_scratch_path = os.path.join(scratch_path, sample_name)
    makedirs(sample_scratch_path)

    censored_path1 = os.path.join(sample_scratch_path, 'censored1.fastq')
    read_summary_path1 = os.path.join(sample_scratch_path, 'read1_summary.csv')
    censor_sample(sample_path,
                  os.path.join(scratch_path, 'bad_cycles.csv'),
                  censored_path1,
                  read_summary_path1)
    censored_path2 = os.path.join(sample_scratch_path, 'censored2.fastq')
    read_summary_path2 = os.path.join(sample_scratch_path, 'read2_summary.csv')
    censor_sample(sample_path2,
                  os.path.join(scratch_path, 'bad_cycles.csv'),
                  censored_path2,
                  read_summary_path2)

    logger.info('Running prelim_map (%d of %d).', sample_index+1, len(run_info.samples))
    with open(os.path.join(sample_scratch_path, 'prelim.csv'), 'wb') as prelim_csv:
        prelim_map(censored_path1,
                   censored_path2,
                   prelim_csv)

    logger.info('Running remap (%d of %d).', sample_index+1, len(run_info.samples))
    with open(os.path.join(sample_scratch_path, 'prelim.csv'), 'rU') as prelim_csv, \
            open(os.path.join(sample_scratch_path, 'remap.csv'), 'wb') as remap_csv, \
            open(os.path.join(sample_out_path, 'remap_counts.csv'), 'wb') as counts_csv, \
            open(os.path.join(sample_out_path, 'remap_conseq.csv'), 'wb') as conseq_csv, \
            open(os.path.join(sample_out_path, 'unmapped1.fastq'), 'w') as unmapped1, \
            open(os.path.join(sample_out_path, 'unmapped2.fastq'), 'w') as unmapped2:

        remap(censored_path1,
              censored_path2,
              prelim_csv,
              remap_csv,
              counts_csv,
              conseq_csv,
              unmapped1,
              unmapped2,
              sample_scratch_path,
              nthreads=1)

    logger.info('Running sam2aln (%d of %d).', sample_index+1, len(run_info.samples))
    with open(os.path.join(sample_scratch_path, 'remap.csv'), 'rU') as remap_csv, \
            open(os.path.join(sample_scratch_path, 'aligned.csv'), 'wb') as aligned_csv, \
            open(os.path.join(sample_out_path, 'conseq_ins.csv'), 'wb') as insert_csv, \
            open(os.path.join(sample_out_path, 'failed_read.csv'), 'wb') as failed_csv:

        sam2aln(remap_csv, aligned_csv, insert_csv, failed_csv)

    logger.info('Running aln2counts (%d of %d).', sample_index+1, len(run_info.samples))
    with open(os.path.join(sample_scratch_path, 'aligned.csv'), 'rU') as aligned_csv, \
            open(os.path.join(sample_out_path, 'nuc.csv'), 'wb') as nuc_csv, \
            open(os.path.join(sample_out_path, 'amino.csv'), 'wb') as amino_csv, \
            open(os.path.join(sample_out_path, 'coord_ins.csv'), 'wb') as coord_ins_csv, \
            open(os.path.join(sample_out_path, 'conseq.csv'), 'wb') as conseq_csv, \
            open(os.path.join(sample_out_path, 'failed_align.csv'), 'wb') as failed_align_csv, \
            open(os.path.join(sample_out_path, 'nuc_variants.csv'), 'wb') as nuc_variants_csv, \
            open(os.path.join(sample_scratch_path, 'coverage_summary.csv'), 'wb') as coverage_summary_csv:

        aln2counts(aligned_csv,
                   nuc_csv,
                   amino_csv,
                   coord_ins_csv,
                   conseq_csv,
                   failed_align_csv,
                   nuc_variants_csv,
                   coverage_summary_csv=coverage_summary_csv)

    logger.info('Running coverage_plots (%d of %d).', sample_index+1, len(run_info.samples))
    coverage_path = os.path.join(sample_out_path, 'coverage')
    with open(os.path.join(sample_out_path, 'amino.csv'), 'rU') as amino_csv, \
            open(os.path.join(sample_out_path, 'coverage_scores.csv'), 'w') as coverage_scores_csv:
        coverage_plot(amino_csv, coverage_scores_csv, path_prefix=coverage_path)

    with open(os.path.join(sample_out_path, 'coverage_scores.csv'), 'rU') as coverage_scores_csv:
        reader = csv.DictReader(coverage_scores_csv)
        is_v3loop_good = False
        for row in reader:
            if row['region'] == 'V3LOOP':
                is_v3loop_good = row['on.score'] == '4'
                break

    if is_v3loop_good:
        logger.info('Running sam_g2p (%d of %d).', sample_index+1, len(run_info.samples))
        g2p_path = create_app_result(data_path,
                                     run_info,
                                     sample_info,
                                     description='Geno To Pheno results',
                                     suffix='_G2P')
        with open(os.path.join(sample_scratch_path, 'remap.csv'), 'rU') as remap_csv, \
                open(os.path.join(sample_out_path, 'nuc.csv'), 'rU') as nuc_csv, \
                open(os.path.join(g2p_path, 'g2p.csv'), 'wb') as g2p_csv, \
                open(os.path.join(g2p_path, 'g2p_summary.csv'), 'wb') as g2p_summary_csv:

            sam_g2p(pssm=pssm,
                    remap_csv=remap_csv,
                    nuc_csv=nuc_csv,
                    g2p_csv=g2p_csv,
                    g2p_summary_csv=g2p_summary_csv,
                    min_count=DEFAULT_MIN_COUNT)
示例#5
0
    def process_sample(self, fastq1, progress, prefixes, image_paths,
                       error_log):
        fastq2 = fastq1.replace('_R1_001',
                                '_R2_001').replace('censored1', 'censored2')
        if not os.path.exists(fastq2):
            raise IOError('ERROR: Missing R2 file for {}'.format(fastq1))

        prefix = os.path.basename(fastq1).replace('_L001_R1_001.fastq',
                                                  '').replace(
                                                      '.censored1.fastq', '')
        prefixes.append(prefix)
        output_csv = prefix + '.prelim.csv'
        self.write('Processing sample {} ({})\n'.format(prefix, progress))
        with open(output_csv, 'wb') as handle:
            prelim_map(fastq1,
                       fastq2,
                       handle,
                       nthreads=self.nthreads,
                       callback=self.callback,
                       stderr=error_log)

        # prepare file handles for remap stage
        with open(output_csv, 'rU') as prelim_csv, \
             open(os.path.join(self.workdir, prefix + '.remap.csv'), 'wb') as remap_csv, \
             open(os.path.join(self.workdir, prefix + '.remap_counts.csv'), 'wb') as counts_csv, \
             open(os.path.join(self.workdir, prefix + '.remap_conseq.csv'), 'wb') as conseq_csv, \
             open(os.path.join(self.workdir, prefix + '.unmapped1.fastq'), 'w') as unmapped1, \
             open(os.path.join(self.workdir, prefix + '.unmapped2.fastq'), 'w') as unmapped2:

            self.write('... remapping\n')
            self.parent.update()
            self.progress_bar['value'] = 0
            remap(fastq1,
                  fastq2,
                  prelim_csv,
                  remap_csv,
                  counts_csv,
                  conseq_csv,
                  unmapped1,
                  unmapped2,
                  self.workdir,
                  nthreads=self.nthreads,
                  callback=self.callback,
                  stderr=error_log)

        # prepare file handles for conversion from SAM format to alignment
        with open(os.path.join(self.workdir, prefix + '.remap.csv'), 'rU') as remap_csv, \
             open(os.path.join(self.workdir, prefix + '.aligned.csv'), 'wb') as aligned_csv, \
             open(os.path.join(self.workdir, prefix + '.insert.csv'), 'wb') as insert_csv, \
             open(os.path.join(self.workdir, prefix + '.failed.csv'), 'wb') as failed_csv:

            self.write('... converting into alignment\n')
            self.parent.update()
            sam2aln(remap_csv,
                    aligned_csv,
                    insert_csv,
                    failed_csv,
                    nthreads=self.nthreads)

        with open(os.path.join(self.workdir, prefix + '.aligned.csv'), 'rU') as aligned_csv, \
             open(os.path.join(self.workdir, prefix + '.nuc.csv'), 'wb') as nuc_csv, \
             open(os.path.join(self.workdir, prefix + '.amino.csv'), 'wb') as amino_csv, \
             open(os.path.join(self.workdir, prefix + '.coord_ins.csv'), 'wb') as coord_ins_csv, \
             open(os.path.join(self.workdir, prefix + '.conseq.csv'), 'wb') as conseq_csv, \
             open(os.path.join(self.workdir, prefix + '.failed_align.csv'), 'wb') as failed_align_csv, \
             open(os.path.join(self.workdir, prefix + '.nuc_variants.csv'), 'wb') as nuc_variants_csv:

            self.parent.update()
            aln2counts(aligned_csv,
                       nuc_csv,
                       amino_csv,
                       coord_ins_csv,
                       conseq_csv,
                       failed_align_csv,
                       nuc_variants_csv,
                       callback=self.callback)

        self.write('... generating coverage plots\n')
        self.parent.update()
        with open(os.path.join(self.workdir, prefix + '.amino.csv'),
                  'rU') as amino_csv:
            image_paths += coverage_plot(amino_csv)
        self.write('... performing g2p scoring on samples covering HIV-1 V3\n')
        self.parent.update()
        with open(os.path.join(self.workdir, prefix + '.remap.csv'), 'rU') as remap_csv, \
             open(os.path.join(self.workdir, prefix + '.nuc.csv'), 'rU') as nuc_csv, \
             open(os.path.join(self.workdir, prefix + '.g2p.csv'), 'wb') as g2p_csv:

            sam_g2p(pssm=self.pssm,
                    remap_csv=remap_csv,
                    nuc_csv=nuc_csv,
                    g2p_csv=g2p_csv)
示例#6
0
文件: micall.py 项目: tarah28/MiCall
 def process_sample(self, fastq1, progress, prefixes, image_paths, error_log):
     fastq2 = fastq1.replace('_R1_001', '_R2_001').replace('censored1',
                                                           'censored2')
     if not os.path.exists(fastq2):
         raise IOError('ERROR: Missing R2 file for {}'.format(fastq1))
     
     prefix = os.path.basename(fastq1).replace('_L001_R1_001.fastq',
                                               '').replace('.censored1.fastq',
                                                           '')
     prefixes.append(prefix)
     output_csv = prefix + '.prelim.csv'
     self.write('Processing sample {} ({})\n'.format(prefix, progress))
     with open(output_csv, 'wb') as handle:
         prelim_map(fastq1,
                    fastq2,
                    handle,
                    nthreads=self.nthreads,
                    callback=self.callback,
                    stderr=error_log)
     
     # prepare file handles for remap stage
     with open(output_csv, 'rU') as prelim_csv, \
          open(os.path.join(self.workdir, prefix + '.remap.csv'), 'wb') as remap_csv, \
          open(os.path.join(self.workdir, prefix + '.remap_counts.csv'), 'wb') as counts_csv, \
          open(os.path.join(self.workdir, prefix + '.remap_conseq.csv'), 'wb') as conseq_csv, \
          open(os.path.join(self.workdir, prefix + '.unmapped1.fastq'), 'w') as unmapped1, \
          open(os.path.join(self.workdir, prefix + '.unmapped2.fastq'), 'w') as unmapped2:
         
         self.write('... remapping\n')
         self.parent.update()
         self.progress_bar['value'] = 0
         remap(fastq1,
               fastq2,
               prelim_csv,
               remap_csv,
               counts_csv,
               conseq_csv,
               unmapped1,
               unmapped2,
               self.workdir,
               nthreads=self.nthreads,
               callback=self.callback,
               stderr=error_log)
         
     # prepare file handles for conversion from SAM format to alignment
     with open(os.path.join(self.workdir, prefix + '.remap.csv'), 'rU') as remap_csv, \
          open(os.path.join(self.workdir, prefix + '.aligned.csv'), 'wb') as aligned_csv, \
          open(os.path.join(self.workdir, prefix + '.insert.csv'), 'wb') as insert_csv, \
          open(os.path.join(self.workdir, prefix + '.failed.csv'), 'wb') as failed_csv:
         
         self.write('... converting into alignment\n')
         self.parent.update()
         sam2aln(remap_csv,
                 aligned_csv,
                 insert_csv,
                 failed_csv,
                 nthreads=self.nthreads)
         
     with open(os.path.join(self.workdir, prefix + '.aligned.csv'), 'rU') as aligned_csv, \
          open(os.path.join(self.workdir, prefix + '.nuc.csv'), 'wb') as nuc_csv, \
          open(os.path.join(self.workdir, prefix + '.amino.csv'), 'wb') as amino_csv, \
          open(os.path.join(self.workdir, prefix + '.coord_ins.csv'), 'wb') as coord_ins_csv, \
          open(os.path.join(self.workdir, prefix + '.conseq.csv'), 'wb') as conseq_csv, \
          open(os.path.join(self.workdir, prefix + '.failed_align.csv'), 'wb') as failed_align_csv, \
          open(os.path.join(self.workdir, prefix + '.nuc_variants.csv'), 'wb') as nuc_variants_csv:
         
         self.parent.update()
         aln2counts(aligned_csv,
                    nuc_csv,
                    amino_csv,
                    coord_ins_csv,
                    conseq_csv,
                    failed_align_csv,
                    nuc_variants_csv,
                    callback=self.callback)
         
     self.write('... generating coverage plots\n')
     self.parent.update()
     with open(os.path.join(self.workdir, prefix + '.amino.csv'), 'rU') as amino_csv:
         image_paths += coverage_plot(amino_csv)
     self.write('... performing g2p scoring on samples covering HIV-1 V3\n')
     self.parent.update()
     with open(os.path.join(self.workdir, prefix + '.remap.csv'), 'rU') as remap_csv, \
          open(os.path.join(self.workdir, prefix + '.nuc.csv'), 'rU') as nuc_csv, \
          open(os.path.join(self.workdir, prefix + '.g2p.csv'), 'wb') as g2p_csv:
         
         sam_g2p(pssm=self.pssm,
                 remap_csv=remap_csv,
                 nuc_csv=nuc_csv,
                 g2p_csv=g2p_csv)