示例#1
0
def relax_system():
    mesh = CuboidMesh(nx=1, ny=1, nz=1)
    sim = Sim(mesh, name='relax')
    sim.set_tols(rtol=1e-10, atol=1e-10)
    sim.alpha = 0.1

    sim.set_m((0, 0, 1))

    sim.add(Zeeman((0, 0, 1e5)))

    w0 = 2 * np.pi * 1e9

    def sin_fun(t):
        return np.sin(w0 * t)

    h0 = 1e3
    theta = np.pi / 20
    hx = h0 * np.sin(theta)
    hz = h0 * np.cos(theta)
    hx = TimeZeeman([hx, 0, hz], sin_fun, name='h')
    sim.add(hx, save_field=True)

    ts = np.linspace(0, 5e-9, 5001)

    for t in ts:
        sim.run_until(t)
示例#2
0
文件: main.py 项目: takluyver/fidimag
def apply_field1(mesh):

    sim = Sim(mesh, name='dyn')

    sim.set_tols(rtol=1e-10, atol=1e-10)
    sim.alpha = 0.02
    sim.gamma = 2.211e5
    sim.Ms = 8.0e5

    sim.set_m(np.load('m0.npy'))

    A = 1.3e-11
    exch = UniformExchange(A=A)
    sim.add(exch)

    demag = Demag()
    sim.add(demag)

    mT = 0.001 / mu0
    print mT

    zeeman = Zeeman([-24.6 * mT, 4.3 * mT, 0], name='H')
    sim.add(zeeman, save_field=True)

    ts = np.linspace(0, 1e-9, 201)
    for t in ts:
        sim.run_until(t)
        print 'sim t=%g' % t
示例#3
0
def relax_system():
    mesh = CuboidMesh(nx=1, ny=1, nz=1)
    sim = Sim(mesh, name='relax')
    sim.driver.set_tols(rtol=1e-10, atol=1e-10)
    sim.driver.alpha = 0.1

    sim.set_m((0, 0, 1))

    sim.add(Zeeman((0, 0, 1e5)))

    w0 = 2 * np.pi * 1e9

    def sin_fun(t):
        return np.sin(w0 * t)

    h0 = 1e3
    theta = np.pi / 20
    hx = h0 * np.sin(theta)
    hz = h0 * np.cos(theta)
    hx = TimeZeeman([hx, 0, hz], sin_fun, name='h')
    sim.add(hx, save_field=True)

    ts = np.linspace(0, 5e-9, 5001)

    for t in ts:
        sim.run_until(t)
示例#4
0
文件: main.py 项目: takluyver/fidimag
def apply_field1(mesh):

    sim = Sim(mesh, name="dyn")

    sim.set_tols(rtol=1e-10, atol=1e-10)
    sim.alpha = 0.02
    sim.gamma = 2.211e5
    sim.Ms = 8.0e5

    sim.set_m(np.load("m0.npy"))

    A = 1.3e-11
    exch = UniformExchange(A=A)
    sim.add(exch)

    demag = Demag()
    sim.add(demag)

    mT = 0.001 / mu0
    print mT

    zeeman = Zeeman([-24.6 * mT, 4.3 * mT, 0], name="H")
    sim.add(zeeman, save_field=True)

    ts = np.linspace(0, 1e-9, 201)
    for t in ts:
        sim.run_until(t)
        print "sim t=%g" % t
示例#5
0
def relax_system():
    mesh = CuboidMesh(nx=1, ny=1, nz=1)
    sim = Sim(mesh, name='relax')
    sim.set_tols(rtol=1e-10, atol=1e-10)
    sim.alpha = 0.5

    sim.set_m((1.0, 0, 0))

    sim.add(Zeeman((0, 0, 1e5)))

    ts = np.linspace(0, 1e-9, 1001)

    for t in ts:
        sim.run_until(t)
def relax_system():
    mesh = CuboidMesh(nx=1, ny=1, nz=1)
    sim = Sim(mesh, name='relax')
    sim.driver.set_tols(rtol=1e-10, atol=1e-10)
    sim.driver.alpha = 0.5

    sim.set_m((1.0, 0, 0))

    sim.add(Zeeman((0, 0, 1e5)))

    ts = np.linspace(0, 1e-9, 1001)

    for t in ts:
        sim.run_until(t)
示例#7
0
文件: main.py 项目: fangohr/fidimag
def excite_system(mesh):

    # Specify the stt dynamics in the simulation
    sim = Sim(mesh, name='dyn', driver='llg_stt')

    sim.set_tols(rtol=1e-12, atol=1e-14)
    sim.alpha = 0.05
    sim.gamma = 2.211e5
    sim.Ms = 8.6e5

    # sim.set_m(init_m)
    sim.set_m(np.load('m0.npy'))

    # Energies
    A = 1.3e-11
    exch = UniformExchange(A=A)
    sim.add(exch)

    anis = UniaxialAnisotropy(5e4)
    sim.add(anis)

    # dmi = DMI(D=8e-4)
    # sim.add(dmi)

    # Set the current in the x direction, in A / m
    # beta is the parameter in the STT torque
    sim.jx = -1e12
    sim.beta = 1

    # The simulation will run for 5 ns and save
    # 500 snapshots of the system in the process
    ts = np.linspace(0, 5e-9, 501)

    for t in ts:
        print 'time', t
        sim.run_until(t)
        sim.save_vtk()
        sim.save_m()
示例#8
0
文件: main.py 项目: fangohr/fidimag
def excite_system(mesh):

    # Specify the stt dynamics in the simulation
    sim = Sim(mesh, name='dyn', driver='llg_stt')

    sim.set_tols(rtol=1e-12, atol=1e-14)
    sim.alpha = 0.05
    sim.gamma = 2.211e5
    sim.Ms = 8.6e5

    # sim.set_m(init_m)
    sim.set_m(np.load('m0.npy'))

    # Energies
    A = 1.3e-11
    exch = UniformExchange(A=A)
    sim.add(exch)

    anis = UniaxialAnisotropy(5e4)
    sim.add(anis)

    # dmi = DMI(D=8e-4)
    # sim.add(dmi)

    # Set the current in the x direction, in A / m
    # beta is the parameter in the STT torque
    sim.jx = -1e12
    sim.beta = 1

    # The simulation will run for 5 ns and save
    # 500 snapshots of the system in the process
    ts = np.linspace(0, 5e-9, 501)

    for t in ts:
        print 'time', t
        sim.run_until(t)
        sim.save_vtk()
        sim.save_m()
示例#9
0
文件: main.py 项目: River315/fidimag
def excite_system(mesh):

    sim = Sim(mesh, name='dyn')

    sim.set_tols(rtol=1e-10, atol=1e-14)
    sim.alpha = 0.01
    sim.gamma = 2.211e5
    sim.Ms = spatial_Ms

    # sim.set_m(init_m)
    sim.set_m(np.load('m0.npy'))

    A = 1.3e-11
    exch = UniformExchange(A=A)
    sim.add(exch)

    demag = Demag()
    sim.add(demag)

    mT = 795.7747154594767
    sigma = 0.08e-9

    def gaussian_fun(t):

        return np.exp(-0.5 * (t / sigma)**2)

    zeeman = TimeZeeman((80 * mT, 0, 0), time_fun=gaussian_fun, name='hx')
    #zeeman = Zeeman((100*mT,0,0), name='hx')
    sim.add(zeeman, save_field=True)

    ts = np.linspace(0, 1e-9, 501)

    for t in ts:
        print 'time', t
        print 'length:', sim.spin_length()[0:200]
        sim.run_until(t)
        sim.save_vtk()
示例#10
0
文件: main.py 项目: takluyver/fidimag
def excite_system(mesh):

    sim = Sim(mesh, name='dyn')

    sim.set_tols(rtol=1e-10, atol=1e-14)
    sim.alpha = 0.01
    sim.gamma = 2.211e5
    sim.Ms = spatial_Ms

    # sim.set_m(init_m)
    sim.set_m(np.load('m0.npy'))

    A = 1.3e-11
    exch = UniformExchange(A=A)
    sim.add(exch)

    demag = Demag()
    sim.add(demag)

    mT = 795.7747154594767
    sigma = 0.08e-9

    def gaussian_fun(t):

        return np.exp(-0.5 * (t / sigma)**2)

    zeeman = TimeZeeman((80 * mT, 0, 0), time_fun=gaussian_fun, name='hx')
    #zeeman = Zeeman((100*mT,0,0), name='hx')
    sim.add(zeeman, save_field=True)

    ts = np.linspace(0, 1e-9, 501)

    for t in ts:
        print 'time', t
        print 'length:', sim.spin_length()[0:200]
        sim.run_until(t)
        sim.save_vtk()