示例#1
0
def _compute_reset_code(target, test_def, args):
    instructions = interpret_asm(
        test_def.code, target, [var.name for var in test_def.variables],
        show_progress=True,
    )

    # TODO: This can be done in parallel or look for speed up the process
    instructions = [
        instruction_from_definition(instr) for instr in instructions
    ]

    instruction_dict = {}
    address = test_def.default_code_address
    progress = Progress(
        len(test_def.roi_memory_access_trace),
        msg="Building instruction dictionary",
    )
    for instr in instructions:
        progress()
        if instr.address is not None:
            if instr.address.base_address == "code":
                address = test_def.default_code_address + \
                          instr.address.displacement
                instr.set_address(address)
        else:
            address = address + instr.architecture_type.format.length
            instr.set_address(address)
        instruction_dict[instr.address] = instr

    free_regs = []
    written_after_read_regs = []
    read_regs = []
    level = 0
    dynamic_count = 0
    progress = Progress(
        len(test_def.roi_memory_access_trace),
        msg="Evaluating register usage",
    )
    reset_regs = set()
    for access in test_def.roi_memory_access_trace:
        progress()

        if access.data_type == "D":
            continue

        dynamic_count += 1
        try:
            instr = instruction_dict[access.address]
            uses = instruction_dict[access.address].uses()
            sets = instruction_dict[access.address].sets()

        except KeyError:
            print_error(
                "Access to from instruction at address "
                "0x%016X registered but such instruction is not"
                " present in the definition." % access.address,
            )
            exit(1)

        # Calls
        if instr.mnemonic == "BL":
            level += 1
        elif instr.mnemonic == "BCL":
            level += 1
        elif instr.mnemonic == "BCCTRL":
            if instr.operands()[2].value in [0, 3]:
                level += 1

        # Returns
        if instr.mnemonic == "BCLR":
            if (((instr.operands()[0].value & 0b10100) == 20) and
                    (instr.operands()[2].value == 0)):
                level -= 1

        # TODO: this should include Z and RISCV instructions for call
        # and return, but currently we do not have memory access traces
        # for such platforms

        for reg in uses:
            if reg not in read_regs:
                read_regs.append(reg)

        for reg in sets:
            if reg in free_regs:
                continue
            elif reg not in read_regs:
                free_regs.append(reg)
            elif reg not in written_after_read_regs:
                written_after_read_regs.append(reg)

        reset_regs = set(read_regs).intersection(
            set(written_after_read_regs),
        )

    reset_regs = sorted(reset_regs)

    assert len(free_regs) == len(set(free_regs))
    assert len(set(free_regs).intersection(set(reset_regs))) == 0

    if len(test_def.roi_memory_access_trace) == 0:
        # We do not have memory access trace, assume calling conventions
        reset_regs = target.volatile_registers

    reset_regs = [
        reg for reg in reset_regs if reg in target.volatile_registers]

    if len(reset_regs) == 0 and len(test_def.roi_memory_access_trace) == 0:
        print_info(
            "No memory access trace found. Resetting volatile registers."
        )
        reset_regs = target.volatile_registers

    unused_regs = sorted(
        (reg for reg in target.registers.values() if reg not in read_regs),
    )

    #
    # Make sure scratch registers are reset last
    #
    for reg in target.scratch_registers:
        if reg in reset_regs:
            reset_regs.remove(reg)
            reset_regs.append(reg)

    free_regs = unused_regs + free_regs

    # Know which ones are not used (or written) and which ones are used
    # Use them as base / temporal registers for addresses

    # Check addresses
    conflict_addresses = {}
    new_ins = []
    progress = Progress(
        len(test_def.roi_memory_access_trace),
        msg="Evaluating memory usage",
    )
    for access in test_def.roi_memory_access_trace:
        progress()
        if access.data_type == "I":
            continue
        val = conflict_addresses.get(
            access.address,
            [access.length, access.access_type],
        )
        if access.access_type not in val[1]:
            val[1] += access.access_type
        val[0] = max(val[0], access.length)
        conflict_addresses[access.address] = val

    fix_addresses = []
    for address in conflict_addresses:
        value = conflict_addresses[address]
        if value[1] == "RW":
            wvalue = None
            for var in test_def.variables:
                if var.var_type.upper() in ["CHAR", "UINT8_T"]:
                    elem_size = 1
                else:
                    raise NotImplementedError
                end_address = var.address + var.num_elements * elem_size
                if var.address <= address <= end_address:
                    offset = int((address - var.address) / elem_size)
                    svalue = var.init_value[
                        offset:offset + int(value[0] / elem_size)
                    ]
                    svalue = "".join(["%02X" % tval for tval in svalue])
                    wvalue = int(svalue, 16)
                    break

            if wvalue is None:
                print_error(
                    "Unable to restore original value for address 0x%X" %
                    address,
                )
                exit(1)

            if value[0] <= 8:
                fix_addresses.append((address, value[0], wvalue))
            else:
                for selem in range(0, value[0]//8):
                    sfmt = "%%0%dX" % (2*value[0])
                    nvalue = sfmt % wvalue
                    nvalue = int(nvalue[selem*16:(selem+1)*16], 16)
                    fix_addresses.append(
                        (address + selem * 8,
                         8,
                         nvalue)
                    )

    reset_steps = []

    context = Context()
    context.set_symbolic(True)

    if len(fix_addresses) > 0:

        # TODO: This can be optimized. Reduce the number of instructions to
        # be added by sorting the reset code (shared values or similar
        # addresses)
        # TODO: This can be optimized for use vector registers when
        # needed
        #
        print_info("Adding instructions to reset memory state")
        reset_register = [
            reg
            for reg in free_regs
            if reg.type.used_for_address_arithmetic and
            reg.name != "GPR0"
        ][0]

        for address, length, value in fix_addresses:

            address_obj = Address(base_address="data", displacement=address)
            new_instructions = target.set_register(
                reset_register, value, context, opt=False,
            )

            for ins in new_instructions:
                ins.add_comment(
                    "Reset code. Setting %s to 0X%016X" %
                    (reset_register.name, value),
                )

            reset_steps.append([new_instructions[:], reset_register, value])
            context.set_register_value(reset_register, value)

            try:
                store_ins = target.store_integer(
                    reset_register, address_obj, length * 8, context,
                )
                new_instructions += store_ins
                reset_steps.append(
                    [store_ins, reset_register, address_obj, length],
                )

            except MicroprobeCodeGenerationError:
                areg = [
                    reg for reg in free_regs
                    if reg.type.used_for_address_arithmetic and reg.name !=
                    "GPR0"
                ][1]

                set_ins = target.set_register(
                    areg, address, context, opt=False,
                )
                new_instructions += set_ins
                reset_steps.append([set_ins, areg, address_obj])

                context.set_register_value(areg, address_obj)

                store_ins = target.store_integer(
                    reset_register, address_obj, length * 8, context,
                )
                new_instructions += store_ins
                reset_steps.append(
                    [store_ins, reset_register, address_obj, length],
                )

                for ins in set_ins:
                    ins.add_comment(
                        "Reset code. Setting %s to 0X%016X" %
                        (areg.name, address),
                    )

            for ins in store_ins:
                ins.add_comment(
                    "Reset code. Setting mem content in 0X%016X" % (address),
                    )

            new_ins.extend(new_instructions)

    # Reset contents of used registers
    for reset_register in reset_regs:
        try:
            value = [
                reg for reg in test_def.registers if reg.name ==
                reset_register.name
            ][0].value
        except IndexError:
            continue

        new_instructions = target.set_register(
            reset_register, value, context, opt=False,
        )
        reset_steps.append([new_instructions, reset_register, value])
        context.set_register_value(reset_register, value)

        for ins in new_instructions:
            ins.add_comment(
                "Reset code. Setting %s to 0X%016X" %
                (reset_register.name, value),
            )

        new_ins.extend(new_instructions)

    try:
        overhead = (((len(new_ins) * 1.0) / dynamic_count) * 100)
    except ZeroDivisionError:
        print_warning("Unable to compute overhead. Zero dynamic instruction "
                      "count")
        overhead = 0

    print_info(
        "%03.2f%% overhead added by resetting code" % overhead,
    )
    if overhead > args['wrap_endless_threshold']:
        print_error(
            "Instructions added: %d" % len(new_ins),
        )
        print_error(
            "Total instructions: %d" % dynamic_count,
        )
        print_error(
            "Reset code above --wrap-endless-threshold. Stopping generation.",
        )
        exit(1)

    return new_ins, overhead, reset_steps
示例#2
0
def _shift_and_fix_code(
    target, code, offset, addresses, reset_steps, registers,
        ):
    """Shift code and fix reset code."""
    scode = []
    for instruction in code:
        instruction = instruction.copy()
        # Fix and shift decorators (not need to modify code)
        for key, values in instruction.decorators.items():
            if not isinstance(values, list):
                values = [values]
            if key in ['MA', 'BT']:
                for idx in range(0, len(values)):
                    if addresses[0] <= values[idx] <= addresses[1]:
                        values[idx] = values[idx] + offset
        scode.append(instruction)

    cidx = 0
    context = Context()
    context.set_symbolic(False)

    for reset_step in reset_steps:

        rins = reset_step[0]
        cins = scode[cidx:cidx+len(rins)]
        rreg = reset_step[1]

        try:
            rval = [reg for reg in registers if reg.name == rreg.name][0].value
        except IndexError:
            # This was a support register to compute an address,
            # it should be fixed
            rval = 0

        for rin, cin in zip(rins, cins):
            if rin.name != cin.instruction_type.name:
                print_error("Unable to fix the reset code")
                exit(1)

        if len(reset_step) == 3:
            rins, reset_register, value = reset_step
            if not isinstance(value, six.integer_types):
                # All addresses should be offset
                value += offset
                nins = target.set_register(
                    reset_register,
                    value.displacement,
                    context,
                    opt=False,
                )
                print_info(
                    "Fixing reset code for reg: %s. "
                    "New value: 0x%016X" %
                    (rreg.name, value.displacement),
                )
            else:
                if abs(value-rval) == offset:
                    # This has been shifted, force offset
                    value += offset
                    print_info(
                        "Fixing reset code for reg: %s. "
                        "New value: 0x%016X" %
                        (rreg.name, value),
                    )
                nins = target.set_register(
                    reset_register, value, context, opt=False,
                )

            context.set_register_value(reset_register, value)
        elif len(reset_step) == 4:
            rins, reset_register, address_obj, length = reset_step
            # All addresses should be offsetted
            address_obj += offset
            nins = target.store_integer(
                reset_register, address_obj, length * 8, context,
            )
            print_info(
                "Fixing reset code for reg: %s. "
                "New value: 0x%016X" %
                (rreg.name, address_obj.displacement),
            )
        else:
            raise NotImplementedError(
                "Unable to shift and fix code"
            )

        if len(rins) != len(nins):
            print_error("Original resetting code:")
            for ins in rins:
                print_error(ins.assembly())
            print_error("New resetting code:")
            for ins in nins:
                print_error(ins.assembly())
            print_error("New resetting code differs from original in length")
            exit(1)

        for ins in nins:
            if len(reset_step) == 3:
                if not isinstance(value, six.integer_types):
                    value = value.displacement
                ins.add_comment(
                    "Reset code. Setting %s to 0X%016X" %
                    (reset_register.name, value),
                )
            else:
                ins.add_comment(
                    "Reset code. Setting mem content in 0X%016X" %
                    (address_obj.displacement),
                )

        for idx, (nin, cin) in enumerate(zip(nins, cins)):
            if nin.name != cin.instruction_type.name:
                print_warning("New code differs from original in opcodes")
            scode[cidx+idx] = instruction_to_definition(nin)
            scode[cidx+idx].comments = scode[cidx+idx].comments[1:]

        cidx += len(rins)

    return scode