def image_files_noise(request): """Three sham images; one has no signal, one has an intensity artifact.""" # for clarity we define images as integer arrays in [0, 11) and # divide by 10 later r = np.random.RandomState(0) shape = (5, 5) # no signal i = conv(0.01 * np.ones(shape, dtype=float) + 0.005 * r.randn(*shape)) # normal image j = conv(0.5 * r.rand(*shape)) # blown-out corner k = 0.5 * r.rand(*shape) k[3:, 3:] = 1.0 k = conv(k) files = [] for im in [i, j, k]: f, fn = tempfile.mkstemp(suffix='.png') files.append(fn) mio.imsave(fn, im) def cleanup(): for fn in files: os.remove(fn) request.addfinalizer(cleanup) illum = 0.01 * np.ones(shape, dtype=float) return files, illum
def make_test_montage_files(missing_fields): shape = (2, 2) fields = list(range(0, 25)) for missing_field in missing_fields: fields.remove(missing_field) ims = [np.ones(shape, np.uint8) * i for i in fields] files = [] for field, im in zip(fields, ims): prefix = "MFGTMP_140206180002_A01f{0:02d}d0".format(field) f, fn = tempfile.mkstemp(prefix=prefix, suffix=".tif") files.append(fn) with warnings.catch_warnings(): warnings.simplefilter("ignore") mio.imsave(fn, im) def cleanup(): for file in files: os.remove(file) request.addfinalizer(cleanup) return files
def image_files(request): # for clarity we define images as integer arrays in [0, 11) and # divide by 10 later i = np.array([[ 7, 4, 1, 1, 0], [ 2, 5, 9, 6, 7], [ 2, 3, 3, 8, 5], [ 3, 0, 1, 7, 5], [ 6, 0, 10, 1, 6]], np.uint8) j = np.array([[ 1, 10, 0, 9, 0], [ 3, 10, 4, 1, 1], [ 4, 10, 0, 7, 4], [ 9, 3, 2, 0, 7], [ 1, 3, 3, 9, 3]], np.uint8) k = np.array([[ 9, 1, 7, 7, 3], [ 9, 1, 6, 2, 2], [ 2, 8, 2, 0, 3], [ 4, 3, 8, 9, 10], [ 6, 0, 2, 3, 10]], np.uint8) files = [] for im in [i, j, k]: f, fn = tempfile.mkstemp(suffix='.png') files.append(fn) mio.imsave(fn, im) def cleanup(): for fn in files: os.remove(fn) request.addfinalizer(cleanup) return files
def image_files_noise(request): """Three sham images; one has no signal, one has an intensity artifact.""" r = np.random.RandomState(0) shape = (5, 5) # no signal i = conv(0.01 * np.ones(shape, dtype=float) + 0.005 * r.randn(*shape)) # normal image j = conv(0.5 * r.rand(*shape)) # blown-out corner k = 0.5 * r.rand(*shape) k[3:, 3:] = 1.0 k = conv(k) files = [] for im in [i, j, k]: f, fn = tempfile.mkstemp(suffix='.png') files.append(fn) mio.imsave(fn, im) def cleanup(): for fn in files: os.remove(fn) request.addfinalizer(cleanup) illum = 0.01 * np.ones(shape, dtype=float) return files, illum
def image_files(): # for clarity we define images as integer arrays in [0, 11) and # divide by 10 later i = np.array([[7, 4, 1, 1, 0], [2, 5, 9, 6, 7], [2, 3, 3, 8, 5], [3, 0, 1, 7, 5], [6, 0, 10, 1, 6]], np.uint8) j = np.array([[1, 10, 0, 9, 0], [3, 10, 4, 1, 1], [4, 10, 0, 7, 4], [9, 3, 2, 0, 7], [1, 3, 3, 9, 3]], np.uint8) k = np.array([[9, 1, 7, 7, 3], [9, 1, 6, 2, 2], [2, 8, 2, 0, 3], [4, 3, 8, 9, 10], [6, 0, 2, 3, 10]], np.uint8) files = [] for im in [i, j, k]: f, fn = tempfile.mkstemp(suffix='.png') files.append(fn) mio.imsave(fn, im) yield files for fn in files: os.remove(fn)
def test_imsave_tif_compress(): im = np.random.randint(0, 256, size=(1024, 1024, 3)).astype(np.uint8) with NamedTemporaryFile(suffix='.tif') as fout: fname = fout.name fout.close() mio.imsave(im, fname, compress=2) imin = mio.imread(fname) np.testing.assert_array_equal(im, imin)
def image_files_n(request): files = [] for i in range(0, num_files): image = np.ones((2, 2), np.uint8) * i file_prefix = '%02d' % (i,) + '_' # filenames must be sortable f, fn = tempfile.mkstemp(prefix=file_prefix, suffix='.png') files.append(fn) mio.imsave(fn, image) def cleanup(): for fn in files: os.remove(fn) request.addfinalizer(cleanup) return files
def image_files_n(request): files = [] for i in range(0, num_files): image = np.ones((2, 2), np.uint8) * i file_prefix = '%02d' % (i, ) + '_' # filenames must be sortable f, fn = tempfile.mkstemp(prefix=file_prefix, suffix='.png') files.append(fn) mio.imsave(fn, image) def cleanup(): for fn in files: os.remove(fn) request.addfinalizer(cleanup) return files