del train_data_gen del val_data_gen # Testing ihm from mimic3benchmark.readers import InHospitalMortalityReader from mimic3models.in_hospital_mortality.utils import read_chunk from mimic3models import nn_utils test_reader = InHospitalMortalityReader(dataset_dir='../../data/in-hospital-mortality/test/', listfile='../../data/in-hospital-mortality/test_listfile.csv', period_length=48.0) ihm_y_true = [] ihm_pred = [] n_examples = test_reader.get_number_of_examples() for i in range(0, n_examples, args.batch_size): j = min(i + args.batch_size, n_examples) (X, ts, labels, header) = read_chunk(test_reader, j - i) for i in range(args.batch_size): X[i] = discretizer.transform(X[i], end=48.0)[0] X[i] = normalizer.transform(X[i]) X = nn_utils.pad_zeros(X, min_length=args_dict['ihm_pos']+1) T = X.shape[1] ihm_M = np.ones(shape=(args.batch_size,1)) decomp_M = np.ones(shape=(args.batch_size, T)) los_M = np.ones(shape=(args.batch_size, T)) pred = model.predict([X, ihm_M, decomp_M, los_M])[0]
del val_data_gen # Testing ihm from mimic3benchmark.readers import InHospitalMortalityReader from mimic3models.in_hospital_mortality.utils import read_chunk from mimic3models import nn_utils test_reader = InHospitalMortalityReader( dataset_dir='../../data/in-hospital-mortality/test/', listfile='../../data/in-hospital-mortality/test_listfile.csv', period_length=48.0) ihm_y_true = [] ihm_pred = [] nsteps = test_reader.get_number_of_examples() // args.batch_size for iteration in range(nsteps): (X, ts, labels, header) = read_chunk(test_reader, args.batch_size) for i in range(args.batch_size): X[i] = discretizer.transform(X[i], end=48.0)[0] X[i] = normalizer.transform(X[i]) X = nn_utils.pad_zeros(X, min_length=args_dict['ihm_pos'] + 1) T = X.shape[1] ihm_M = np.ones(shape=(args.batch_size, 1)) decomp_M = np.ones(shape=(args.batch_size, T)) los_M = np.ones(shape=(args.batch_size, T)) pred = model.predict([X, ihm_M, decomp_M, los_M])[0] ihm_y_true += labels