val_data_gen = utils.BatchGen(reader=val_reader, discretizer=discretizer, normalizer=normalizer, partition=args.partition, batch_size=args.batch_size, steps=val_nbatches, shuffle=False) if args.mode == 'train': # Prepare training path = os.path.join( args.output_dir, 'keras_states/' + model.final_name + '.chunk{epoch}.test{val_loss}.state') metrics_callback = keras_utils.LengthOfStayMetrics( train_data_gen=train_data_gen, val_data_gen=val_data_gen, partition=args.partition, batch_size=args.batch_size, verbose=args.verbose) # make sure save directory exists dirname = os.path.dirname(path) if not os.path.exists(dirname): os.makedirs(dirname) saver = ModelCheckpoint(path, verbose=1, period=args.save_every) keras_logs = os.path.join(args.output_dir, 'keras_logs') if not os.path.exists(keras_logs): os.makedirs(keras_logs) csv_logger = CSVLogger(os.path.join(keras_logs, model.final_name + '.csv'), append=True, separator=';')
normalizer=normalizer, partition=args.partition, batch_size=args.batch_size, steps=val_nbatches, shuffle=False) if args.mode == 'train': # Prepare training path = os.path.join( args.output_dir, 'keras_states/' + model.final_name + '.chunk{epoch}.test{val_loss}.state') metrics_callback = keras_utils.LengthOfStayMetrics( train_data_gen=train_data_gen, val_data_gen=val_data_gen, delta=1e-7, partition=args.partition, batch_size=args.batch_size, verbose=args.verbose, dp=args.dp, noise_multiplier=args.noise_multiplier) # make sure save directory exists dirname = os.path.dirname(path) if not os.path.exists(dirname): os.makedirs(dirname) saver = ModelCheckpoint(path, verbose=1, period=args.save_every) keras_logs = os.path.join(args.output_dir, 'keras_logs') if not os.path.exists(keras_logs): os.makedirs(keras_logs) csv_logger = CSVLogger(os.path.join(keras_logs, model.final_name + '.csv'), append=True,