示例#1
0
def test_nad_method():
    """
    NAD-Defense test.
    """
    # 1. load trained network
    ckpt_name = './trained_ckpt_file/checkpoint_lenet-10_1875.ckpt'
    net = LeNet5()
    load_dict = load_checkpoint(ckpt_name)
    load_param_into_net(net, load_dict)

    loss = SoftmaxCrossEntropyWithLogits(is_grad=False, sparse=False)
    opt = nn.Momentum(net.trainable_params(), 0.01, 0.09)

    nad = NaturalAdversarialDefense(net,
                                    loss_fn=loss,
                                    optimizer=opt,
                                    bounds=(0.0, 1.0),
                                    eps=0.3)

    # 2. get test data
    data_list = "./MNIST_unzip/test"
    batch_size = 32
    ds_test = generate_mnist_dataset(data_list,
                                     batch_size=batch_size,
                                     sparse=False)
    inputs = []
    labels = []
    for data in ds_test.create_tuple_iterator():
        inputs.append(data[0].astype(np.float32))
        labels.append(data[1])
    inputs = np.concatenate(inputs)
    labels = np.concatenate(labels)

    # 3. get accuracy of test data on original model
    net.set_train(False)
    acc_list = []
    batchs = inputs.shape[0] // batch_size
    for i in range(batchs):
        batch_inputs = inputs[i * batch_size:(i + 1) * batch_size]
        batch_labels = np.argmax(labels[i * batch_size:(i + 1) * batch_size],
                                 axis=1)
        logits = net(Tensor(batch_inputs)).asnumpy()
        label_pred = np.argmax(logits, axis=1)
        acc_list.append(np.mean(batch_labels == label_pred))

    LOGGER.debug(TAG, 'accuracy of TEST data on original model is : %s',
                 np.mean(acc_list))

    # 4. get adv of test data
    attack = FastGradientSignMethod(net, eps=0.3)
    adv_data = attack.batch_generate(inputs, labels)
    LOGGER.debug(TAG, 'adv_data.shape is : %s', adv_data.shape)

    # 5. get accuracy of adv data on original model
    net.set_train(False)
    acc_list = []
    batchs = adv_data.shape[0] // batch_size
    for i in range(batchs):
        batch_inputs = adv_data[i * batch_size:(i + 1) * batch_size]
        batch_labels = np.argmax(labels[i * batch_size:(i + 1) * batch_size],
                                 axis=1)
        logits = net(Tensor(batch_inputs)).asnumpy()
        label_pred = np.argmax(logits, axis=1)
        acc_list.append(np.mean(batch_labels == label_pred))

    LOGGER.debug(TAG, 'accuracy of adv data on original model is : %s',
                 np.mean(acc_list))

    # 6. defense
    net.set_train()
    nad.batch_defense(inputs, labels, batch_size=32, epochs=10)

    # 7. get accuracy of test data on defensed model
    net.set_train(False)
    acc_list = []
    batchs = inputs.shape[0] // batch_size
    for i in range(batchs):
        batch_inputs = inputs[i * batch_size:(i + 1) * batch_size]
        batch_labels = np.argmax(labels[i * batch_size:(i + 1) * batch_size],
                                 axis=1)
        logits = net(Tensor(batch_inputs)).asnumpy()
        label_pred = np.argmax(logits, axis=1)
        acc_list.append(np.mean(batch_labels == label_pred))

    LOGGER.debug(TAG, 'accuracy of TEST data on defensed model is : %s',
                 np.mean(acc_list))

    # 8. get accuracy of adv data on defensed model
    acc_list = []
    batchs = adv_data.shape[0] // batch_size
    for i in range(batchs):
        batch_inputs = adv_data[i * batch_size:(i + 1) * batch_size]
        batch_labels = np.argmax(labels[i * batch_size:(i + 1) * batch_size],
                                 axis=1)
        logits = net(Tensor(batch_inputs)).asnumpy()
        label_pred = np.argmax(logits, axis=1)
        acc_list.append(np.mean(batch_labels == label_pred))

    LOGGER.debug(TAG, 'accuracy of adv data on defensed model is : %s',
                 np.mean(acc_list))
def test_black_defense():
    # load trained network
    current_dir = os.path.dirname(os.path.abspath(__file__))
    ckpt_name = os.path.abspath(
        os.path.join(current_dir,
                     './trained_ckpt_file/checkpoint_lenet-10_1875.ckpt'))
    # ckpt_name = './trained_ckpt_file/checkpoint_lenet-10_1875.ckpt'
    wb_net = LeNet5()
    load_dict = load_checkpoint(ckpt_name)
    load_param_into_net(wb_net, load_dict)

    # get test data
    data_list = "./MNIST_unzip/test"
    batch_size = 32
    ds_test = generate_mnist_dataset(data_list,
                                     batch_size=batch_size,
                                     sparse=False)
    inputs = []
    labels = []
    for data in ds_test.create_tuple_iterator():
        inputs.append(data[0].astype(np.float32))
        labels.append(data[1])
    inputs = np.concatenate(inputs).astype(np.float32)
    labels = np.concatenate(labels).astype(np.float32)
    labels_sparse = np.argmax(labels, axis=1)

    target_label = np.random.randint(0, 10, size=labels_sparse.shape[0])
    for idx in range(labels_sparse.shape[0]):
        while target_label[idx] == labels_sparse[idx]:
            target_label[idx] = np.random.randint(0, 10)
    target_label = np.eye(10)[target_label].astype(np.float32)

    attacked_size = 50
    benign_size = 500

    attacked_sample = inputs[:attacked_size]
    attacked_true_label = labels[:attacked_size]
    benign_sample = inputs[attacked_size:attacked_size + benign_size]

    wb_model = ModelToBeAttacked(wb_net)

    # gen white-box adversarial examples of test data
    wb_attack = FastGradientSignMethod(wb_net, eps=0.3)
    wb_adv_sample = wb_attack.generate(attacked_sample, attacked_true_label)

    wb_raw_preds = softmax(wb_model.predict(wb_adv_sample), axis=1)
    accuracy_test = np.mean(
        np.equal(np.argmax(wb_model.predict(attacked_sample), axis=1),
                 np.argmax(attacked_true_label, axis=1)))
    LOGGER.info(TAG, "prediction accuracy before white-box attack is : %s",
                accuracy_test)
    accuracy_adv = np.mean(
        np.equal(np.argmax(wb_raw_preds, axis=1),
                 np.argmax(attacked_true_label, axis=1)))
    LOGGER.info(TAG, "prediction accuracy after white-box attack is : %s",
                accuracy_adv)

    # improve the robustness of model with white-box adversarial examples
    loss = SoftmaxCrossEntropyWithLogits(is_grad=False, sparse=False)
    opt = nn.Momentum(wb_net.trainable_params(), 0.01, 0.09)

    nad = NaturalAdversarialDefense(wb_net,
                                    loss_fn=loss,
                                    optimizer=opt,
                                    bounds=(0.0, 1.0),
                                    eps=0.3)
    wb_net.set_train(False)
    nad.batch_defense(inputs[:5000], labels[:5000], batch_size=32, epochs=10)

    wb_def_preds = wb_net(Tensor(wb_adv_sample)).asnumpy()
    wb_def_preds = softmax(wb_def_preds, axis=1)
    accuracy_def = np.mean(
        np.equal(np.argmax(wb_def_preds, axis=1),
                 np.argmax(attacked_true_label, axis=1)))
    LOGGER.info(TAG, "prediction accuracy after defense is : %s", accuracy_def)

    # calculate defense evaluation metrics for defense against white-box attack
    wb_def_evaluate = DefenseEvaluate(wb_raw_preds, wb_def_preds,
                                      np.argmax(attacked_true_label, axis=1))
    LOGGER.info(TAG, 'defense evaluation for white-box adversarial attack')
    LOGGER.info(
        TAG, 'classification accuracy variance (CAV) is : {:.2f}'.format(
            wb_def_evaluate.cav()))
    LOGGER.info(
        TAG, 'classification rectify ratio (CRR) is : {:.2f}'.format(
            wb_def_evaluate.crr()))
    LOGGER.info(
        TAG, 'classification sacrifice ratio (CSR) is : {:.2f}'.format(
            wb_def_evaluate.csr()))
    LOGGER.info(
        TAG, 'classification confidence variance (CCV) is : {:.2f}'.format(
            wb_def_evaluate.ccv()))
    LOGGER.info(
        TAG, 'classification output stability is : {:.2f}'.format(
            wb_def_evaluate.cos()))

    # calculate defense evaluation metrics for defense against black-box attack
    LOGGER.info(TAG, 'defense evaluation for black-box adversarial attack')
    bb_raw_preds = []
    bb_def_preds = []
    raw_query_counts = []
    raw_query_time = []
    def_query_counts = []
    def_query_time = []
    def_detection_counts = []

    # gen black-box adversarial examples of test data
    bb_net = LeNet5()
    load_param_into_net(bb_net, load_dict)
    bb_model = ModelToBeAttacked(bb_net, defense=False)
    attack_rm = GeneticAttack(model=bb_model,
                              pop_size=6,
                              mutation_rate=0.05,
                              per_bounds=0.1,
                              step_size=0.25,
                              temp=0.1,
                              sparse=False)
    attack_target_label = target_label[:attacked_size]
    true_label = labels_sparse[:attacked_size + benign_size]
    # evaluate robustness of original model
    # gen black-box adversarial examples of test data
    for idx in range(attacked_size):
        raw_st = time.time()
        raw_sl, raw_a, raw_qc = attack_rm.generate(
            np.expand_dims(attacked_sample[idx], axis=0),
            np.expand_dims(attack_target_label[idx], axis=0))
        raw_t = time.time() - raw_st
        bb_raw_preds.extend(softmax(bb_model.predict(raw_a), axis=1))
        raw_query_counts.extend(raw_qc)
        raw_query_time.append(raw_t)

    for idx in range(benign_size):
        raw_st = time.time()
        bb_raw_pred = softmax(bb_model.predict(
            np.expand_dims(benign_sample[idx], axis=0)),
                              axis=1)
        raw_t = time.time() - raw_st
        bb_raw_preds.extend(bb_raw_pred)
        raw_query_counts.extend([0])
        raw_query_time.append(raw_t)

    accuracy_test = np.mean(
        np.equal(np.argmax(bb_raw_preds[0:len(attack_target_label)], axis=1),
                 np.argmax(attack_target_label, axis=1)))
    LOGGER.info(TAG, "attack success before adv defense is : %s",
                accuracy_test)

    # improve the robustness of model with similarity-based detector
    bb_def_model = ModelToBeAttacked(bb_net,
                                     defense=True,
                                     train_images=inputs[0:6000])
    # attack defensed model
    attack_dm = GeneticAttack(model=bb_def_model,
                              pop_size=6,
                              mutation_rate=0.05,
                              per_bounds=0.1,
                              step_size=0.25,
                              temp=0.1,
                              sparse=False)
    for idx in range(attacked_size):
        def_st = time.time()
        def_sl, def_a, def_qc = attack_dm.generate(
            np.expand_dims(attacked_sample[idx], axis=0),
            np.expand_dims(attack_target_label[idx], axis=0))
        def_t = time.time() - def_st
        det_res = bb_def_model.get_detected_result()
        def_detection_counts.append(np.sum(det_res[-def_qc[0]:]))
        bb_def_preds.extend(softmax(bb_def_model.predict(def_a), axis=1))
        def_query_counts.extend(def_qc)
        def_query_time.append(def_t)

    for idx in range(benign_size):
        def_st = time.time()
        bb_def_pred = softmax(bb_def_model.predict(
            np.expand_dims(benign_sample[idx], axis=0)),
                              axis=1)
        def_t = time.time() - def_st
        det_res = bb_def_model.get_detected_result()
        def_detection_counts.append(np.sum(det_res[-1]))
        bb_def_preds.extend(bb_def_pred)
        def_query_counts.extend([0])
        def_query_time.append(def_t)

    accuracy_adv = np.mean(
        np.equal(np.argmax(bb_def_preds[0:len(attack_target_label)], axis=1),
                 np.argmax(attack_target_label, axis=1)))
    LOGGER.info(TAG, "attack success rate after adv defense is : %s",
                accuracy_adv)

    bb_raw_preds = np.array(bb_raw_preds).astype(np.float32)
    bb_def_preds = np.array(bb_def_preds).astype(np.float32)
    # check evaluate data
    max_queries = 6000

    def_evaluate = BlackDefenseEvaluate(bb_raw_preds, bb_def_preds,
                                        np.array(raw_query_counts),
                                        np.array(def_query_counts),
                                        np.array(raw_query_time),
                                        np.array(def_query_time),
                                        np.array(def_detection_counts),
                                        true_label, max_queries)

    LOGGER.info(
        TAG, 'query count variance of adversaries is : {:.2f}'.format(
            def_evaluate.qcv()))
    LOGGER.info(
        TAG, 'attack success rate variance of adversaries '
        'is : {:.2f}'.format(def_evaluate.asv()))
    LOGGER.info(
        TAG, 'false positive rate (FPR) of the query-based detector '
        'is : {:.2f}'.format(def_evaluate.fpr()))
    LOGGER.info(
        TAG, 'the benign query response time variance (QRV) '
        'is : {:.2f}'.format(def_evaluate.qrv()))
示例#3
0
if __name__ == '__main__':
    num_classes = 10
    batch_size = 32

    sparse = False
    context.set_context(mode=context.GRAPH_MODE)
    context.set_context(device_target='Ascend')

    # create test data
    inputs_np = np.random.rand(batch_size, 1, 32, 32).astype(np.float32)
    labels_np = np.random.randint(num_classes,
                                  size=batch_size).astype(np.int32)
    if not sparse:
        labels_np = np.eye(num_classes)[labels_np].astype(np.float32)

    net = Net()

    # test fgsm
    attack = FastGradientSignMethod(net, eps=0.3)
    attack.generate(inputs_np, labels_np)

    # test train ops
    loss_fn = nn.SoftmaxCrossEntropyWithLogits(is_grad=False, sparse=sparse)
    optimizer = Momentum(
        filter(lambda x: x.requires_grad, net.get_parameters()), 0.01, 0.9)
    loss_net = WithLossCell(net, loss_fn)
    train_net = TrainOneStepCell(loss_net, optimizer)
    train_net.set_train()

    train_net(Tensor(inputs_np), Tensor(labels_np))