def select_column_from_mindboggle_tables(subjects, hemi, index, tables_dir, table_name, is_surface_table=True, write_table=True, output_table=''): """ Select column from Mindboggle shape tables and make a new table. For example, extract the median travel depth column for the label regions across a set of subjects, and make a new table. Expects:: <tables_dir>/<subject>/tables/['left','right']_cortical_surface/<table_name> Parameters ---------- subjects : list of strings names of subjects processed by Mindboggle hemi : string hemisphere in {'left', 'right} index : integer index for column to select tables_dir : string name of Mindboggle tables directory table_name : string name of Mindboggle table file is_surface_table : Boolean if True, use path to surface tables write_table : Boolean write output table? output_table : string output table file name Returns ------- tables : list of strings input table files (full paths) columns : list of lists of floats or integers columns of data output_table : string output table file name Examples -------- >>> import os >>> from mindboggle.mio.tables import select_column_from_mindboggle_tables >>> subjects = ['Twins-2-1', 'Colin27-1'] >>> hemi = 'left' >>> index = 2 >>> tables_dir = os.path.join(os.environ['HOME'], 'mindboggled') >>> table_name = "label_shapes.csv" >>> label_name = 'Label name' >>> is_surface_table = True >>> write_table = True >>> output_table = '' >>> select_column_from_mindboggle_tables(subjects, hemi, index, tables_dir, >>> table_name, is_surface_table, write_table, output_table) """ import os from mindboggle.mio.tables import select_column_from_tables #------------------------------------------------------------------------- # Construct list of Mindboggle shape table file names: #------------------------------------------------------------------------- tables = [] for subject in subjects: if is_surface_table: table = os.path.join(tables_dir, subject, 'tables', hemi+'_cortical_surface', table_name) else: table = os.path.join(tables_dir, subject, 'tables', table_name) tables.append(table) #------------------------------------------------------------------------- # Extract columns and construct new table: #------------------------------------------------------------------------- tables, columns, output_table = select_column_from_tables(tables, index, write_table, output_table) return tables, columns, output_table
def select_column_from_mindboggle_tables(subjects, hemi, index, tables_dir, table_name, is_surface_table=True, write_table=True, output_table=''): """ Select column from Mindboggle shape tables and make a new table. For example, extract the median travel depth column for the label regions across a set of subjects, and make a new table. Expects:: <tables_dir>/<subject>/tables/['left','right']_cortical_surface/<table_name> Parameters ---------- subjects : list of strings names of subjects processed by Mindboggle hemi : string hemisphere in {'left', 'right} index : integer index for column to select tables_dir : string name of Mindboggle tables directory table_name : string name of Mindboggle table file is_surface_table : Boolean if True, use path to surface tables write_table : Boolean write output table? output_table : string output table file name Returns ------- tables : list of strings input table files (full paths) columns : list of lists of floats or integers columns of data output_table : string output table file name Examples -------- >>> import os >>> from mindboggle.mio.tables import select_column_from_mindboggle_tables >>> subjects = ['Twins-2-1', 'Colin27-1'] >>> hemi = 'left' >>> index = 2 >>> tables_dir = os.path.join(os.environ['HOME'], 'mindboggled') >>> table_name = "label_shapes.csv" >>> label_name = 'Label name' >>> is_surface_table = True >>> write_table = True >>> output_table = '' >>> select_column_from_mindboggle_tables(subjects, hemi, index, tables_dir, >>> table_name, is_surface_table, write_table, output_table) """ import os from mindboggle.mio.tables import select_column_from_tables #------------------------------------------------------------------------- # Construct list of Mindboggle shape table file names: #------------------------------------------------------------------------- tables = [] for subject in subjects: if is_surface_table: table = os.path.join(tables_dir, subject, 'tables', hemi + '_cortical_surface', table_name) else: table = os.path.join(tables_dir, subject, 'tables', table_name) tables.append(table) #------------------------------------------------------------------------- # Extract columns and construct new table: #------------------------------------------------------------------------- tables, columns, output_table = select_column_from_tables( tables, index, write_table, output_table) return tables, columns, output_table
def select_column_from_mindboggle_tables(subjects, hemi, index, tables_dir, table_name, is_surface_table=True, write_table=True, output_table=''): """ Select column from Mindboggle shape tables and make a new table. For example, extract the median travel depth column for the label regions across a set of subjects, and make a new table. Expects:: <tables_dir>/<subject>/tables/['left','right']_cortical_surface/<table_name> Parameters ---------- subjects : list of strings names of subjects processed by Mindboggle hemi : string hemisphere in {'left', 'right} index : integer index for column to select tables_dir : string name of Mindboggle tables directory table_name : string name of Mindboggle table file is_surface_table : bool if True, use path to surface tables write_table : bool write output table? output_table : string output table file name Returns ------- tables : list of strings input table files (full paths) columns : list of lists of floats or integers columns of data output_table : string output table file name Examples -------- >>> import os >>> from mindboggle.mio.tables import select_column_from_mindboggle_tables >>> path = os.environ['MINDBOGGLE_DATA'] # doctest: +SKIP >>> subject1 = os.path.basename(path) # doctest: +SKIP >>> subject2 = os.path.basename(path) # doctest: +SKIP >>> subjects = [subject1, subject2] # doctest: +SKIP >>> hemi = 'left' >>> index = 2 >>> tables_dir = os.path.dirname(path) # doctest: +SKIP >>> table_name = "label_shapes.csv" >>> label_name = 'Label name' >>> is_surface_table = True >>> write_table = True >>> output_table = '' >>> tables, cols, output = select_column_from_mindboggle_tables(subjects, ... hemi, index, tables_dir, table_name, is_surface_table, ... write_table, output_table) # doctest: +SKIP >>> cols[0][0] # doctest: +SKIP 878.03969839999979 >>> cols[0][1] # doctest: +SKIP 3085.6236725000008 >>> cols[0][2] # doctest: +SKIP 1761.2330760000002 """ import os from mindboggle.mio.tables import select_column_from_tables # ------------------------------------------------------------------------ # Construct list of Mindboggle shape table file names: # ------------------------------------------------------------------------ tables = [] for subject in subjects: if is_surface_table: table = os.path.join(tables_dir, subject, 'tables', hemi + '_cortical_surface', table_name) else: table = os.path.join(tables_dir, subject, 'tables', table_name) tables.append(table) # ------------------------------------------------------------------------ # Extract columns and construct new table: # ------------------------------------------------------------------------ tables, columns, output_table = select_column_from_tables( tables, index, write_table, output_table) return tables, columns, output_table
def select_column_from_mindboggle_tables(subjects, hemi, index, tables_dir, table_name, is_surface_table=True, write_table=True, output_table=''): """ Select column from Mindboggle shape tables and make a new table. For example, extract the median travel depth column for the label regions across a set of subjects, and make a new table. Expects:: <tables_dir>/<subject>/tables/['left','right']_cortical_surface/<table_name> Parameters ---------- subjects : list of strings names of subjects processed by Mindboggle hemi : string hemisphere in {'left', 'right} index : integer index for column to select tables_dir : string name of Mindboggle tables directory table_name : string name of Mindboggle table file is_surface_table : bool if True, use path to surface tables write_table : bool write output table? output_table : string output table file name Returns ------- tables : list of strings input table files (full paths) columns : list of lists of floats or integers columns of data output_table : string output table file name Examples -------- >>> import os >>> from mindboggle.mio.tables import select_column_from_mindboggle_tables >>> path = os.environ['MINDBOGGLE_DATA'] # doctest: +SKIP >>> subject1 = os.path.basename(path) # doctest: +SKIP >>> subject2 = os.path.basename(path) # doctest: +SKIP >>> subjects = [subject1, subject2] # doctest: +SKIP >>> hemi = 'left' >>> index = 2 >>> tables_dir = os.path.dirname(path) # doctest: +SKIP >>> table_name = "label_shapes.csv" >>> label_name = 'Label name' >>> is_surface_table = True >>> write_table = True >>> output_table = '' >>> tables, cols, output = select_column_from_mindboggle_tables(subjects, ... hemi, index, tables_dir, table_name, is_surface_table, ... write_table, output_table) # doctest: +SKIP >>> cols[0][0] # doctest: +SKIP 878.03969839999979 >>> cols[0][1] # doctest: +SKIP 3085.6236725000008 >>> cols[0][2] # doctest: +SKIP 1761.2330760000002 """ import os from mindboggle.mio.tables import select_column_from_tables #------------------------------------------------------------------------- # Construct list of Mindboggle shape table file names: #------------------------------------------------------------------------- tables = [] for subject in subjects: if is_surface_table: table = os.path.join(tables_dir, subject, 'tables', hemi+'_cortical_surface', table_name) else: table = os.path.join(tables_dir, subject, 'tables', table_name) tables.append(table) #------------------------------------------------------------------------- # Extract columns and construct new table: #------------------------------------------------------------------------- tables, columns, output_table = select_column_from_tables(tables, index, write_table, output_table) return tables, columns, output_table