def test_cut_out_op_multicut(): """ Test Cutout """ logger.info("test_cut_out") # First dataset data1 = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, columns_list=["image"]) transforms_1 = [f.Decode(), f.ToTensor(), f.RandomErasing(value='random')] transform_1 = f.ComposeOp(transforms_1) data1 = data1.map(input_columns=["image"], operations=transform_1()) # Second dataset data2 = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, columns_list=["image"]) decode_op = c.Decode() cut_out_op = c.CutOut(80, num_patches=10) transforms_2 = [decode_op, cut_out_op] data2 = data2.map(input_columns=["image"], operations=transforms_2) num_iter = 0 for item1, item2 in zip(data1.create_dict_iterator(), data2.create_dict_iterator()): num_iter += 1 image_1 = (item1["image"].transpose(1, 2, 0) * 255).astype(np.uint8) # C image doesn't require transpose image_2 = item2["image"] logger.info("shape of image_1: {}".format(image_1.shape)) logger.info("shape of image_2: {}".format(image_2.shape)) logger.info("dtype of image_1: {}".format(image_1.dtype)) logger.info("dtype of image_2: {}".format(image_2.dtype))
def test_random_erasing_md5(): """ Test RandomErasing with md5 check """ logger.info("Test RandomErasing with md5 check") original_seed = config_get_set_seed(5) original_num_parallel_workers = config_get_set_num_parallel_workers(1) # Generate dataset data = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, columns_list=["image"], shuffle=False) transforms_1 = [ vision.Decode(), vision.ToTensor(), vision.RandomErasing(value='random') ] transform_1 = vision.ComposeOp(transforms_1) data = data.map(input_columns=["image"], operations=transform_1()) # Compare with expected md5 from images filename = "random_erasing_01_result.npz" save_and_check_md5(data, filename, generate_golden=GENERATE_GOLDEN) # Restore configuration ds.config.set_seed(original_seed) ds.config.set_num_parallel_workers((original_num_parallel_workers))
def create_imagenet_dataset(imagenet_dir): ds = de.ImageFolderDatasetV2(imagenet_dir) transform = F.ComposeOp([ F.Decode(), F.RandomHorizontalFlip(0.5), F.ToTensor(), F.Normalize((0.491, 0.482, 0.447), (0.247, 0.243, 0.262)), F.RandomErasing() ]) ds = ds.map(input_columns="image", operations=transform()) ds = ds.shuffle(buffer_size=5) ds = ds.repeat(3) return ds
def test_random_erasing_op(plot=False): """ Test RandomErasing and Cutout """ logger.info("test_random_erasing") # First dataset data1 = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, columns_list=["image"], shuffle=False) transforms_1 = [ vision.Decode(), vision.ToTensor(), vision.RandomErasing(value='random') ] transform_1 = vision.ComposeOp(transforms_1) data1 = data1.map(input_columns=["image"], operations=transform_1()) # Second dataset data2 = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, columns_list=["image"], shuffle=False) transforms_2 = [vision.Decode(), vision.ToTensor(), vision.Cutout(80)] transform_2 = vision.ComposeOp(transforms_2) data2 = data2.map(input_columns=["image"], operations=transform_2()) num_iter = 0 for item1, item2 in zip(data1.create_dict_iterator(), data2.create_dict_iterator()): num_iter += 1 image_1 = (item1["image"].transpose(1, 2, 0) * 255).astype(np.uint8) image_2 = (item2["image"].transpose(1, 2, 0) * 255).astype(np.uint8) logger.info("shape of image_1: {}".format(image_1.shape)) logger.info("shape of image_2: {}".format(image_2.shape)) logger.info("dtype of image_1: {}".format(image_1.dtype)) logger.info("dtype of image_2: {}".format(image_2.dtype)) mse = diff_mse(image_1, image_2) if plot: visualize_image(image_1, image_2, mse)