def test_random_horizontal_flip_with_bbox_invalid_bounds_c():
    """
    Test RandomHorizontalFlipWithBBox op with invalid bounding boxes
    """
    logger.info("test_random_horizontal_bbox_invalid_bounds_c")

    test_op = c_vision.RandomHorizontalFlipWithBBox(1)

    dataVoc2 = ds.VOCDataset(DATA_DIR,
                             task="Detection",
                             usage="train",
                             shuffle=False,
                             decode=True)
    check_bad_bbox(dataVoc2, test_op, InvalidBBoxType.WidthOverflow,
                   "bounding boxes is out of bounds of the image")
    dataVoc2 = ds.VOCDataset(DATA_DIR,
                             task="Detection",
                             usage="train",
                             shuffle=False,
                             decode=True)
    check_bad_bbox(dataVoc2, test_op, InvalidBBoxType.HeightOverflow,
                   "bounding boxes is out of bounds of the image")
    dataVoc2 = ds.VOCDataset(DATA_DIR,
                             task="Detection",
                             usage="train",
                             shuffle=False,
                             decode=True)
    check_bad_bbox(dataVoc2, test_op, InvalidBBoxType.NegativeXY,
                   "negative value")
    dataVoc2 = ds.VOCDataset(DATA_DIR,
                             task="Detection",
                             usage="train",
                             shuffle=False,
                             decode=True)
    check_bad_bbox(dataVoc2, test_op, InvalidBBoxType.WrongShape, "4 features")
def test_random_horizontal_flip_with_bbox_invalid_prob_c():
    """
    Test RandomHorizontalFlipWithBBox op with invalid input probability
    """
    logger.info("test_random_horizontal_bbox_invalid_prob_c")

    dataVoc2 = ds.VOCDataset(DATA_DIR,
                             task="Detection",
                             usage="train",
                             shuffle=False,
                             decode=True)

    try:
        # Note: Valid range of prob should be [0.0, 1.0]
        test_op = c_vision.RandomHorizontalFlipWithBBox(1.5)
        # map to apply ops
        dataVoc2 = dataVoc2.map(operations=[test_op],
                                input_columns=["image", "bbox"],
                                output_columns=["image", "bbox"],
                                column_order=["image",
                                              "bbox"])  # Add column for "bbox"
    except ValueError as error:
        logger.info("Got an exception in DE: {}".format(str(error)))
        assert "Input prob is not within the required interval of (0.0 to 1.0)." in str(
            error)
def test_random_horizontal_flip_with_bbox_valid_edge_c(plot_vis=False):
    """
    Test RandomHorizontalFlipWithBBox op (testing with valid edge case, box covering full image).
    Prints images side by side with and without Aug applied + bboxes to compare and test
    """
    logger.info("test_horizontal_flip_with_bbox_valid_edge_c")

    dataVoc1 = ds.VOCDataset(DATA_DIR,
                             task="Detection",
                             usage="train",
                             shuffle=False,
                             decode=True)
    dataVoc2 = ds.VOCDataset(DATA_DIR,
                             task="Detection",
                             usage="train",
                             shuffle=False,
                             decode=True)

    test_op = c_vision.RandomHorizontalFlipWithBBox(1)

    # map to apply ops
    # Add column for "bbox"
    dataVoc1 = dataVoc1.map(
        operations=lambda img, bbox:
        (img, np.array([[0, 0, img.shape[1], img.shape[0], 0, 0, 0]]).astype(
            np.float32)),
        input_columns=["image", "bbox"],
        output_columns=["image", "bbox"],
        column_order=["image", "bbox"])
    dataVoc2 = dataVoc2.map(
        operations=lambda img, bbox:
        (img, np.array([[0, 0, img.shape[1], img.shape[0], 0, 0, 0]]).astype(
            np.float32)),
        input_columns=["image", "bbox"],
        output_columns=["image", "bbox"],
        column_order=["image", "bbox"])
    dataVoc2 = dataVoc2.map(operations=[test_op],
                            input_columns=["image", "bbox"],
                            output_columns=["image", "bbox"],
                            column_order=["image", "bbox"])

    unaugSamp, augSamp = [], []

    for unAug, Aug in zip(
            dataVoc1.create_dict_iterator(num_epochs=1, output_numpy=True),
            dataVoc2.create_dict_iterator(num_epochs=1, output_numpy=True)):
        unaugSamp.append(unAug)
        augSamp.append(Aug)

    if plot_vis:
        visualize_with_bounding_boxes(unaugSamp, augSamp)
def test_random_horizontal_flip_with_bbox_valid_rand_c(plot_vis=False):
    """
    Uses a valid non-default input, expect to pass
    Prints images side by side with and without Aug applied + bboxes to
    compare and test
    """
    logger.info("test_random_horizontal_bbox_valid_rand_c")

    original_seed = config_get_set_seed(1)
    original_num_parallel_workers = config_get_set_num_parallel_workers(1)

    # Load dataset
    dataVoc1 = ds.VOCDataset(DATA_DIR,
                             task="Detection",
                             usage="train",
                             shuffle=False,
                             decode=True)

    dataVoc2 = ds.VOCDataset(DATA_DIR,
                             task="Detection",
                             usage="train",
                             shuffle=False,
                             decode=True)

    test_op = c_vision.RandomHorizontalFlipWithBBox(0.6)

    # map to apply ops
    dataVoc2 = dataVoc2.map(operations=[test_op],
                            input_columns=["image", "bbox"],
                            output_columns=["image", "bbox"],
                            column_order=["image", "bbox"])

    filename = "random_horizontal_flip_with_bbox_01_c_result.npz"
    save_and_check_md5(dataVoc2, filename, generate_golden=GENERATE_GOLDEN)

    unaugSamp, augSamp = [], []

    for unAug, Aug in zip(
            dataVoc1.create_dict_iterator(num_epochs=1, output_numpy=True),
            dataVoc2.create_dict_iterator(num_epochs=1, output_numpy=True)):
        unaugSamp.append(unAug)
        augSamp.append(Aug)

    if plot_vis:
        visualize_with_bounding_boxes(unaugSamp, augSamp)

    # Restore config setting
    ds.config.set_seed(original_seed)
    ds.config.set_num_parallel_workers(original_num_parallel_workers)
def test_random_horizontal_flip_with_bbox_op_coco_c(plot_vis=False):
    """
    Prints images and bboxes side by side with and without RandomHorizontalFlipWithBBox Op applied,
    Testing with COCO dataset
    """
    logger.info("test_random_horizontal_flip_with_bbox_op_coco_c")

    dataCoco1 = ds.CocoDataset(DATA_DIR_2[0],
                               annotation_file=DATA_DIR_2[1],
                               task="Detection",
                               decode=True,
                               shuffle=False)

    dataCoco2 = ds.CocoDataset(DATA_DIR_2[0],
                               annotation_file=DATA_DIR_2[1],
                               task="Detection",
                               decode=True,
                               shuffle=False)

    test_op = c_vision.RandomHorizontalFlipWithBBox(1)

    dataCoco2 = dataCoco2.map(operations=[test_op],
                              input_columns=["image", "bbox"],
                              output_columns=["image", "bbox"],
                              column_order=["image", "bbox"])

    unaugSamp, augSamp = [], []

    for unAug, Aug in zip(
            dataCoco1.create_dict_iterator(num_epochs=1, output_numpy=True),
            dataCoco2.create_dict_iterator(num_epochs=1, output_numpy=True)):
        unaugSamp.append(unAug)
        augSamp.append(Aug)

    if plot_vis:
        visualize_with_bounding_boxes(unaugSamp, augSamp, "bbox")
def test_random_horizontal_flip_with_bbox_op_c(plot_vis=False):
    """
    Prints images and bboxes side by side with and without RandomHorizontalFlipWithBBox Op applied
    """
    logger.info("test_random_horizontal_flip_with_bbox_op_c")

    # Load dataset
    dataVoc1 = ds.VOCDataset(DATA_DIR,
                             task="Detection",
                             usage="train",
                             shuffle=False,
                             decode=True)

    dataVoc2 = ds.VOCDataset(DATA_DIR,
                             task="Detection",
                             usage="train",
                             shuffle=False,
                             decode=True)

    test_op = c_vision.RandomHorizontalFlipWithBBox(1)

    dataVoc2 = dataVoc2.map(operations=[test_op],
                            input_columns=["image", "bbox"],
                            output_columns=["image", "bbox"],
                            column_order=["image", "bbox"])

    unaugSamp, augSamp = [], []

    for unAug, Aug in zip(
            dataVoc1.create_dict_iterator(num_epochs=1, output_numpy=True),
            dataVoc2.create_dict_iterator(num_epochs=1, output_numpy=True)):
        unaugSamp.append(unAug)
        augSamp.append(Aug)

    if plot_vis:
        visualize_with_bounding_boxes(unaugSamp, augSamp)