parser = argparse.ArgumentParser(description='Image classification') parser.add_argument('--checkpoint_path', type=str, default=None, help='Checkpoint file path') parser.add_argument('--dataset_path', type=str, default=None, help='Dataset path') args_opt = parser.parse_args() device_id = int(os.getenv('DEVICE_ID')) context.set_context(mode=context.GRAPH_MODE, device_target="Ascend", device_id=device_id, save_graphs=False) context.set_context(enable_task_sink=True) context.set_context(enable_loop_sink=True) context.set_context(enable_mem_reuse=True) if __name__ == '__main__': loss = SoftmaxCrossEntropyWithLogits(is_grad=False, sparse=True, reduction='mean') net = mobilenet_v2(num_classes=config.num_classes) net.to_float(mstype.float16) for _, cell in net.cells_and_names(): if isinstance(cell, nn.Dense): cell.add_flags_recursive(fp32=True) dataset = create_dataset(dataset_path=args_opt.dataset_path, do_train=False, batch_size=config.batch_size) step_size = dataset.get_dataset_size() if args_opt.checkpoint_path: param_dict = load_checkpoint(args_opt.checkpoint_path) load_param_into_net(net, param_dict) net.set_train(False) model = Model(net, loss_fn=loss, metrics={'acc'}) res = model.eval(dataset)
device_id = int(os.getenv('DEVICE_ID')) context.set_context(mode=context.GRAPH_MODE, device_target="Ascend", device_id=device_id, save_graphs=False) context.set_context(enable_task_sink=True) context.set_context(enable_loop_sink=True) context.set_context(enable_mem_reuse=True) if __name__ == '__main__': loss = SoftmaxCrossEntropyWithLogits(is_grad=False, sparse=True, reduction='mean') net = mobilenet_v2() dataset = create_dataset(dataset_path=args_opt.dataset_path, do_train=False, batch_size=config.batch_size) step_size = dataset.get_dataset_size() if args_opt.checkpoint_path: param_dict = load_checkpoint(args_opt.checkpoint_path) load_param_into_net(net, param_dict) net.set_train(False) model = Model(net, loss_fn=loss, metrics={'acc'}) res = model.eval(dataset) print("result:", res, "ckpt=", args_opt.checkpoint_path)