def test_l1_regularizer09(): scale = 0.5 weights = Tensor([[False, False], [False, False]]) try: net = nn.L1Regularizer(scale) net(weights) except TypeError: assert True
def test_l1_regularizer08(): scale = 0.5 net = nn.L1Regularizer(scale) weights = Tensor(np.array([[1.0, -2.0], [-3.0, 4.0]]).astype(np.float32)) output = net(weights) expect = 5.0 print("output : ", output.asnumpy()) assert np.all(output.asnumpy() == expect)
def test_l1_regularizer_input_tuple(): scale = 0.5 net = nn.L1Regularizer(scale) weights = (1, 2, 3, 4) try: output = net(weights) print("output : ", output.asnumpy()) except TypeError: assert True
def __init__(self, scale): super(Net_l1_regularizer, self).__init__() self.l1_regularizer = nn.L1Regularizer(scale)