示例#1
0
def test_net(network, data_path, ckpt):
    """define the evaluation method"""
    print("============== Starting Testing ==============")
    #load the saved model for evaluation
    load_checkpoint(ckpt, net=network)
    #load testing dataset
    ds_eval = create_dataset(False, data_path)

    # config = GPTConfig(batch_size=4,
    #                    seq_length=1024,
    #                    vocab_size=50257,
    #                    embedding_size=1024,
    #                    num_layers=24,
    #                    num_heads=16,
    #                    expand_ratio=4,
    #                    post_layernorm_residual=False,
    #                    dropout_rate=0.1,
    #                    compute_dtype=mstype.float16,
    #                    use_past=False)
    # loss = CrossEntropyLoss(config)

    net_loss = SoftmaxCrossEntropyWithLogits(sparse=True, reduction='mean')
    model = Model(resnet, net_loss, metrics={"Accuracy": Accuracy()})
    # model = Model(resnet, net_loss, metrics={"Accuracy": Accuracy()}, amp_level="O3")
    acc = model.eval(ds_eval, dataset_sink_mode=False)
    print("============== Accuracy:{} ==============".format(acc))
示例#2
0
def output_file_formats(ckpt_path, net_work, batch_size, output_file_name,
                        output_format):
    load_checkpoint(ckpt_path, net=net_work)
    input_data = np.random.uniform(0.0, 1.0,
                                   size=batch_size).astype(np.float32)
    export(net_work,
           Tensor(input_data),
           file_name=output_file_name,
           file_format=output_format)
示例#3
0
def main():
    network = LeNet5()
    # load the parameter into net
    load_checkpoint(args.ckpt_path, net=network)
    input_x = np.random.uniform(0.0, 1.0, size=[1, 1, 32,
                                                32]).astype(np.float32)
    export(network,
           Tensor(input_x),
           file_name=args.file_name,
           file_format=args.file_format)
示例#4
0
    def __init__(self, batch_size, encoder_ck_file, downstream_ck_file):
        """init function"""
        super(Reranker, self).__init__(auto_prefix=False)

        self.encoder = Albert(batch_size)
        param_dict = load_checkpoint(encoder_ck_file)
        not_load_params_1 = load_param_into_net(self.encoder, param_dict)
        print(f"re-ranker albert not loaded params: {not_load_params_1}")

        self.no_answer_mlp = Rerank_Downstream()
        param_dict = load_checkpoint(downstream_ck_file)
        not_load_params_2 = load_param_into_net(self.no_answer_mlp, param_dict)
        print(f"re-ranker downstream not loaded params: {not_load_params_2}")
示例#5
0
    def __init__(self, batch_size, encoder_ck_file, downstream_ck_file):
        """init function"""
        super(Reader, self).__init__(auto_prefix=False)

        self.encoder = Reader_Albert(batch_size)
        param_dict = load_checkpoint(encoder_ck_file)
        not_load_params = load_param_into_net(self.encoder, param_dict)
        print(f"not loaded: {not_load_params}")

        self.downstream = Reader_Downstream()
        param_dict = load_checkpoint(downstream_ck_file)
        not_load_params = load_param_into_net(self.downstream, param_dict)
        print(f"not loaded: {not_load_params}")

        self.bmm = BatchMatMul()
示例#6
0
    def __eval(self):
        # import
        from mindspore import Model, load_param_into_net, load_checkpoint
        from mindspore.nn.metrics import Accuracy

        # load params
        if self.__ckpt_path:
            load_param_into_net(self.__network,
                                load_checkpoint(self.__ckpt_path))
        else:
            print(
                "Warning: `ckpt_path` is None, Please call func: `set_ckpt_path($ckpt_path)`."
            )
            return

        # loss_fn & optimizer & metrics
        model = Model(self.__network,
                      loss_fn=self.__loss_fn,
                      optimizer=self.__optimizer,
                      metrics={"Accuracy": Accuracy()}
                      if self.__metrics is None else self.__metrics)

        # eval
        print(">>>>>>>>>>>>>>>>>>>>> eval start ... <<<<<<<<<<<<<<<<<<<<<<")
        result = model.eval(self.__dataset)
        print(
            ">>>>>>>>>>>>>>>>>>>>> eval success ~ <<<<<<<<<<<<<<<<<<<<<<: result=",
            result)
示例#7
0
 def __init__(self, config, network):
     super(OneHopBert, self).__init__(auto_prefix=False)
     self.network = network
     self.mlp = Model()
     param_dict = load_checkpoint(config.onehop_mlp_path)
     load_param_into_net(self.mlp, param_dict)
     self.cast = P.Cast()
示例#8
0
    def __init__(self, requires_grad=False):
        super(Vgg19, self).__init__()

        ##load vgg16
        vgg = Vgg(cfg['19'], phase="test", args=imagenet_cfg)
        # model = os.path.join(opt.data_url, 'vgg19_ImageNet.ckpt')
        model = os.path.join('./', 'vgg19_ImageNet.ckpt')
        print(model)
        param_dict = load_checkpoint(model)
        # print(param_dict)
        load_param_into_net(vgg, param_dict)
        vgg.set_train(False)

        vgg_pretrained_features = vgg.layers
        self.slice1 = nn.SequentialCell()
        self.slice2 = nn.SequentialCell()
        self.slice3 = nn.SequentialCell()
        self.slice4 = nn.SequentialCell()
        self.slice5 = nn.SequentialCell()
        for x in range(2):
            self.slice1.append(vgg_pretrained_features[x])
        for x in range(2, 7):
            self.slice2.append(vgg_pretrained_features[x])
        for x in range(7, 12):
            self.slice3.append(vgg_pretrained_features[x])
        for x in range(12, 21):
            self.slice4.append(vgg_pretrained_features[x])
        for x in range(21, 30):
            self.slice5.append(vgg_pretrained_features[x])
        if not requires_grad:
            for param in self.get_parameters():
                param.requires_grad = False
    def fix_ckpt(self, ckpt_path, new_ckpt_path):
        """Fix checkpoint file."""
        param_dict = load_checkpoint(ckpt_path)

        main_module_name = self._fixed_mapper['main_module_name']
        fixed_variable_dict = self._fixed_mapper['fixed_variable_mapper']
        fixed_module_dict = self._fixed_mapper['fixed_module_mapper']

        save_obj = list()
        for weight_name, weight_value in param_dict.items():
            weight_name_scopes = weight_name.split('.')
            weight_name_scopes.insert(0, main_module_name)
            for idx, w in enumerate(weight_name_scopes[:-1]):
                for fixed_variable_module, fixed_variable_name_mapper in fixed_variable_dict.items(
                ):
                    if re.match(
                            fixed_variable_module,
                            fixed_module_dict.get('_'.join(w.split('_')[:-1]),
                                                  w)):
                        weight_name = weight_name.replace(
                            weight_name_scopes[idx + 1],
                            fixed_variable_name_mapper.get(
                                weight_name_scopes[idx + 1],
                                weight_name_scopes[idx + 1]))

            obj = {'name': weight_name, 'data': Tensor(weight_value)}
            save_obj.append(obj)

        save_checkpoint(save_obj, new_ckpt_path)
        logger_console.info(f'Saved new checkpoint file to {new_ckpt_path}.')
示例#10
0
    def epoch_end(self, run_context):
        if self.step_eval:
            return None
        flag = ''
        cb_params = run_context.original_args()
        cur_epoch = cb_params.cur_epoch_num
        if cur_epoch > 0 and cur_epoch % self.eval_epoch == 0:
            acc = self.eval()

            if acc > self.best_acc:
                flag = '↑'
                self.best_acc = acc
                save_checkpoint(self.model._network, self.best_ckpt)
                self.logger.update_acc_ckpt(acc, self.best_ckpt)

            else:
                if acc > self.threshold:
                    self.patience_count += 1
                    if self.patience_count > self.patience:
                        param_dict = load_checkpoint(
                            ckpt_file_name=self.best_ckpt,
                            net=self.model._network)
                        load_param_into_net(net=self.model._network,
                                            parameter_dict=param_dict)
                        self.patience_count = 0

            print(
                f'* acc for epoch: {cur_epoch} is {acc * 100}%{flag}, best acc is {self.best_acc * 100}%'
            )
示例#11
0
def eval_quant():
    context.set_context(mode=context.GRAPH_MODE, device_target=device_target)
    cfg = quant_cfg
    ds_eval = create_dataset(os.path.join(data_path, "test"), cfg.batch_size,
                             1)
    ckpt_path = './ckpt_lenet_quant-10_937.ckpt'
    # define fusion network
    network = LeNet5Fusion(cfg.num_classes)
    # convert fusion network to quantization aware network
    quantizer = QuantizationAwareTraining(quant_delay=0,
                                          bn_fold=False,
                                          freeze_bn=10000,
                                          per_channel=[True, False],
                                          symmetric=[True, False])
    network = quantizer.quantize(network)

    # define loss
    net_loss = nn.SoftmaxCrossEntropyWithLogits(sparse=True, reduction="mean")
    # define network optimization
    net_opt = nn.Momentum(network.trainable_params(), cfg.lr, cfg.momentum)

    # call back and monitor
    model = Model(network, net_loss, net_opt, metrics={"Accuracy": Accuracy()})

    # load quantization aware network checkpoint
    param_dict = load_checkpoint(ckpt_path)
    not_load_param = load_param_into_net(network, param_dict)
    if not_load_param:
        raise ValueError("Load param into net fail!")

    print("============== Starting Testing ==============")
    acc = model.eval(ds_eval, dataset_sink_mode=True)
    print("============== {} ==============".format(acc))
    assert acc['Accuracy'] > 0.98
示例#12
0
    def __train(self):
        # import
        from mindspore import Model, load_param_into_net, load_checkpoint

        # load params
        if self.__ckpt_path and os.path.isfile(
                self.__ckpt_path) and os.path.exists(self.__ckpt_path):
            load_param_into_net(self.__network,
                                load_checkpoint(self.__ckpt_path))

        # loss_fn & optimizer & metrics
        model = Model(self.__network,
                      loss_fn=self.__loss_fn,
                      optimizer=self.__optimizer,
                      metrics=self.__metrics)

        # train
        print(">>>>>>>>>>>>>>>>>>>>> train start ... <<<<<<<<<<<<<<<<<<<<<<")
        self.__update_cbs()
        model.train(self.__epoch_size,
                    self.__dataset,
                    callbacks=self.__callbacks,
                    dataset_sink_mode=self.__do_sink,
                    sink_size=self.__sink_size)
        print(">>>>>>>>>>>>>>>>>>>>> train success ~ <<<<<<<<<<<<<<<<<<<<<<")
示例#13
0
def test_net(network, model, mnist_path):
    """Define the evaluation method"""

    print("==================== Starting Testing ===============")
    param_dict = load_checkpoint(
        "./model/ckpt/mindspore_quick_start/checkpoint_lenet-1_1874.ckpt")
    load_param_into_net(network, param_dict)
    ds_eval = create_dataset(os.path.join(mnist_path, "test"))
    acc = model.eval(ds_eval, dataset_sink_mode=False)
    print("==================== Accuracy:{} ===============".format(acc))
示例#14
0
def train_lenet_quant(optim_option="QAT"):
    context.set_context(mode=context.GRAPH_MODE, device_target=device_target)
    cfg = quant_cfg
    ckpt_path = './ckpt_lenet_noquant-10_1875.ckpt'
    ds_train = create_dataset(os.path.join(data_path, "train"), cfg.batch_size,
                              1)
    step_size = ds_train.get_dataset_size()

    # define fusion network
    network = LeNet5Fusion(cfg.num_classes)

    # load quantization aware network checkpoint
    param_dict = load_checkpoint(ckpt_path)
    load_nonquant_param_into_quant_net(network, param_dict)

    # convert fusion network to quantization aware network
    if optim_option == "LEARNED_SCALE":
        quant_optim_otions = OptimizeOption.LEARNED_SCALE
        quantizer = QuantizationAwareTraining(
            bn_fold=False,
            per_channel=[True, False],
            symmetric=[True, True],
            narrow_range=[True, True],
            freeze_bn=0,
            quant_delay=0,
            one_conv_fold=True,
            optimize_option=quant_optim_otions)
    else:
        quantizer = QuantizationAwareTraining(quant_delay=900,
                                              bn_fold=False,
                                              per_channel=[True, False],
                                              symmetric=[True, False])
    network = quantizer.quantize(network)

    # define network loss
    net_loss = nn.SoftmaxCrossEntropyWithLogits(sparse=True, reduction="mean")
    # define network optimization
    net_opt = nn.Momentum(network.trainable_params(), cfg.lr, cfg.momentum)

    # call back and monitor
    config_ckpt = CheckpointConfig(save_checkpoint_steps=cfg.epoch_size *
                                   step_size,
                                   keep_checkpoint_max=cfg.keep_checkpoint_max)
    ckpt_callback = ModelCheckpoint(prefix="ckpt_lenet_quant" + optim_option,
                                    config=config_ckpt)

    # define model
    model = Model(network, net_loss, net_opt, metrics={"Accuracy": Accuracy()})

    print("============== Starting Training ==============")
    model.train(cfg['epoch_size'],
                ds_train,
                callbacks=[ckpt_callback, LossMonitor()],
                dataset_sink_mode=True)
    print("============== End Training ==============")
def source_checker(py_path, ckpt_path):
    """Check source model script and source checkpoint file."""
    sys.path.append(os.path.dirname(py_path))
    model = getattr(
        import_module(os.path.basename(py_path).replace('.py', '')), 'Model')()
    try:
        param_dict = load_checkpoint(ckpt_path)
        not_load_name = load_param_into_net(model, param_dict)
        return not not_load_name
    except (ValueError, TypeError, RuntimeError):
        return False
示例#16
0
文件: lenet.py 项目: xuweichn/docs
def test_net(network, network_model, data_path):
    """Define the evaluation method."""
    print("============== Starting Testing ==============")
    # load the saved model for evaluation
    param_dict = load_checkpoint("checkpoint_lenet-1_1875.ckpt")
    # load parameter to the network
    load_param_into_net(network, param_dict)
    # load testing dataset
    ds_eval = create_dataset(os.path.join(data_path, "test"))
    acc = network_model.eval(ds_eval, dataset_sink_mode=False)
    print("============== Accuracy:{} ==============".format(acc))
示例#17
0
def test_eval(model_ckpt_path):
    '''eval model'''
    target = args_opt.device_target
    if target == "Ascend":
        devid = int(os.getenv('DEVICE_ID'))
        context.set_context(mode=context.GRAPH_MODE,
                            device_target="Ascend",
                            device_id=devid)
    bert_net_cfg.batch_size = 1
    poetrymodel = BertPoetryModel(bert_net_cfg, False, 3191, dropout_prob=0.0)
    poetrymodel.set_train(False)
    param_dict = load_checkpoint(model_ckpt_path)
    load_param_into_net(poetrymodel, param_dict)

    # random generation/continue
    start_time = time.time()
    output = generate_random_poetry(poetrymodel, s='')
    end_to_end_delay = (time.time() - start_time) * 1000
    a = re.findall(r'[\u4e00-\u9fa5]*[\uff0c\u3002]', output)

    print("\n**********************************")
    print("随机生成: \n")
    for poem in a:
        print(poem)
    print("\ncost time: {:.1f} ms".format(end_to_end_delay))
    print("\n")

    start = "天下为公"
    start_time = time.time()
    output = generate_random_poetry(poetrymodel, s=start)
    end_to_end_delay = (time.time() - start_time) * 1000
    a = re.findall(r'[\u4e00-\u9fa5]*[\uff0c\u3002]', output)

    print("\n**********************************")
    print("续写 【{}】: \n".format(start))
    for poem in a:
        print(poem)
    print("\ncost time: {:.1f} ms".format(end_to_end_delay))
    print("\n")

    # hidden poetry
    s = "人工智能"
    start_time = time.time()
    output = generate_hidden(poetrymodel, head=s)
    end_to_end_delay = (time.time() - start_time) * 1000
    a = re.findall(r'[\u4e00-\u9fa5]*[\uff0c\u3002]', output)
    print("\n**********************************")
    print("藏头诗 【{}】: \n".format(s))
    for poem in a:
        print(poem)
    print("\ncost time: {:.1f} ms".format(end_to_end_delay))
    print("\n")
示例#18
0
def export_net(model_ckpt_path):
    bert_net_cfg.batch_size = 1
    poetrymodel = BertPoetryModel(bert_net_cfg, False, 3191, dropout_prob=0.0)
    poetrymodel.set_train(False)
    param_dict = load_checkpoint(model_ckpt_path)
    load_param_into_net(poetrymodel, param_dict)
    input_id = np.ones(shape=(1, 128))
    token_type_id = np.ones(shape=(1, 128))
    pad_mask = np.ones(shape=(1, 128))
    export(poetrymodel, Tensor(input_id, mstype.int32),\
            Tensor(token_type_id, mstype.int32),\
            Tensor(pad_mask, mstype.float32),\
            file_name='poetry.pb', file_format='MINDIR')
示例#19
0
def run_export(args):
    """ export """
    device_id = int(os.getenv('DEVICE_ID', '0'))
    context.set_context(mode=context.GRAPH_MODE,
                        device_target="Ascend",
                        device_id=device_id)
    net = RCAN(arg)
    param_dict = load_checkpoint(args.ckpt_path)
    load_param_into_net(net, param_dict)
    net.set_train(False)
    print('load mindspore net and checkpoint successfully.')
    inputs = Tensor(np.zeros([args.batch_size, 3, 678, 1020], np.float32))
    export(net, inputs, file_name=args.file_name, file_format=args.file_format)
    print('export successfully!')
示例#20
0
def test_net(network, network_model, data_path):
    """Define the evaluation method."""
    print("============== Starting Testing ==============")
    # load the saved model for evaluation
    latest_file = newest(data_path)
    print(latest_file)
    param_dict = load_checkpoint(latest_file)
    # load parameter to the network
    load_param_into_net(network, param_dict)
    # load testing dataset
    ds_eval = dm.create_dataset(os.path.join(
        data_path, "./MindSpore_train_images_dataset/test"),
                                do_train=False)
    acc = network_model.eval(ds_eval, dataset_sink_mode=False)
    print("============== Accuracy:{} ==============".format(acc))
示例#21
0
    def load_model(self, filename=None):
        """Loading pre-trained model weights from a file."""
        model_name = Config().trainer.model_name
        model_dir = Config().params['pretrained_model_dir']

        if filename is not None:
            model_path = f'{model_dir}{filename}'
        else:
            model_path = f'{model_dir}{model_name}.ckpt'

        if self.client_id == 0:
            logging.info("[Server #%d] Loading a model from %s.", os.getpid(),
                         model_path)
        else:
            logging.info("[Client #%d] Loading a model from %s.",
                         self.client_id, model_path)

        param_dict = mindspore.load_checkpoint(model_path)
        mindspore.load_param_into_net(self.model, param_dict)
示例#22
0
文件: train.py 项目: wan-h/Brainpower
def test_net(network, model, data_path):
    """Define the evaluation method."""
    print("============== Starting Testing ==============")
    # load the saved model for evaluation
    checkpoint = "./101.ckpt"
    _t = time.time()
    param_dict = load_checkpoint(checkpoint)
    # load parameter to the network
    load_param_into_net(network, param_dict)
    print(f"Load params to model cost: {time.time() - _t} s")

    # inference
    print("============== Infer Testing ==============")
    input_data = Tensor(np.random.randint(0, 255, [1, 3, 224, 224]),
                        mindspore.float32)

    infer_time = 0
    while infer_time < 21:
        _t = time.time()
        model.predict(input_data)
        print(f"Model infer cost: {time.time() - _t} s")
        infer_time += 1
示例#23
0
def eval_lenet():
    context.set_context(mode=context.GRAPH_MODE, device_target=device_target)
    cfg = nonquant_cfg
    ds_eval = create_dataset(os.path.join(data_path, "test"), cfg.batch_size,
                             1)
    ckpt_path = './ckpt_lenet_noquant-10_1875.ckpt'
    # define fusion network
    network = LeNet5(cfg.num_classes)
    net_loss = nn.SoftmaxCrossEntropyWithLogits(sparse=True, reduction="mean")
    net_opt = nn.Momentum(network.trainable_params(), cfg.lr, cfg.momentum)
    # call back and monitor
    model = Model(network, net_loss, net_opt, metrics={"Accuracy": Accuracy()})
    # load quantization aware network checkpoint
    param_dict = load_checkpoint(ckpt_path)
    not_load_param = load_param_into_net(network, param_dict)
    if not_load_param:
        raise ValueError("Load param into net fail!")

    print("============== Starting Testing ==============")
    acc = model.eval(ds_eval, dataset_sink_mode=True)
    print("============== {} ==============".format(acc))
    assert acc['Accuracy'] > 0.98
示例#24
0
                    required=True,
                    help='inceptionv3 ckpt file.')
parser.add_argument('--output_file',
                    type=str,
                    default='inceptionv3.air',
                    help='inceptionv3 output air name.')
parser.add_argument('--file_format',
                    type=str,
                    choices=["AIR", "ONNX", "MINDIR"],
                    default='AIR',
                    help='file format')
parser.add_argument('--width', type=int, default=299, help='input width')
parser.add_argument('--height', type=int, default=299, help='input height')
args = parser.parse_args()

if __name__ == '__main__':
    net = InceptionV3(num_classes=cfg.num_classes, is_training=False)
    param_dict = load_checkpoint(args.ckpt_file)
    load_param_into_net(net, param_dict)

    input_arr = Tensor(
        np.random.uniform(0.0,
                          1.0,
                          size=[cfg.batch_size, 3, args.width, args.height]),
        ms.float32)

    export(net,
           input_arr,
           file_name=args.output_file,
           file_format=args.file_format)
示例#25
0
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")

parser = argparse.ArgumentParser(description='CNNCTC_export')
parser.add_argument('--ckpt_file',
                    type=str,
                    default='./ckpts/cnn_ctc.ckpt',
                    help='CNN&CTC ckpt file.')
parser.add_argument('--output_file',
                    type=str,
                    default='cnn_ctc',
                    help='CNN&CTC output air name.')
args_opt = parser.parse_args()

if __name__ == '__main__':
    cfg = Config_CNNCTC()
    ckpt_path = cfg.CKPT_PATH

    if args_opt.ckpt_file != "":
        ckpt_path = args_opt.ckpt_file

    net = CNNCTC_Model(cfg.NUM_CLASS, cfg.HIDDEN_SIZE, cfg.FINAL_FEATURE_WIDTH)

    load_checkpoint(ckpt_path, net=net)

    bs = cfg.TEST_BATCH_SIZE

    input_data = Tensor(np.zeros([bs, 3, cfg.IMG_H, cfg.IMG_W]),
                        mstype.float32)

    export(net, input_data, file_name=args_opt.output_file, file_format="AIR")
示例#26
0
from src.lenet import LeNet5

parser = argparse.ArgumentParser(description='MindSpore MNIST Example')
parser.add_argument(
    '--device_target',
    type=str,
    default="Ascend",
    choices=['Ascend', 'GPU'],
    help='device where the code will be implemented (default: Ascend)')
parser.add_argument(
    '--ckpt_path',
    type=str,
    default="",
    help='if mode is test, must provide path where the trained ckpt file')
args = parser.parse_args()

if __name__ == "__main__":
    context.set_context(mode=context.GRAPH_MODE,
                        device_target=args.device_target)

    # define fusion network
    network = LeNet5(cfg.num_classes)
    # load network checkpoint
    param_dict = load_checkpoint(args.ckpt_path)
    load_param_into_net(network, param_dict)

    # export network
    inputs = Tensor(np.ones([1, 1, cfg.image_height, cfg.image_width]),
                    mindspore.float32)
    export(network, inputs, file_name=cfg.air_name, file_format='AIR')
示例#27
0
"""export"""
import argparse
import numpy as np

from mindspore import context, Tensor, load_checkpoint, load_param_into_net, export
from src.resnet_thor import resnet50 as resnet
from src.config import config

parser = argparse.ArgumentParser(description='checkpoint export')
parser.add_argument('--checkpoint_path', type=str, default=None, help='Checkpoint file path')
args_opt = parser.parse_args()

if __name__ == '__main__':

    context.set_context(mode=context.GRAPH_MODE, save_graphs=False)

    # define net
    net = resnet(class_num=config.class_num)
    net.add_flags_recursive(thor=False)

    # load checkpoint
    param_dict = load_checkpoint(args_opt.checkpoint_path)
    keys = list(param_dict.keys())
    for key in keys:
        if "damping" in key:
            param_dict.pop(key)
    load_param_into_net(net, param_dict)

    inputs = np.random.uniform(0.0, 1.0, size=[1, 3, 224, 224]).astype(np.float32)
    export(net, Tensor(inputs), file_name='resnet-42_5004.air', file_format='AIR')
示例#28
0
def evaluation(d_id):
    """evaluation"""
    context.set_context(mode=context.GRAPH_MODE,
                        device_target='Ascend',
                        device_id=d_id,
                        save_graphs=False)
    print('********************** loading corpus ********************** ')
    s_lc = time.time()
    data_generator = DataGen(config)
    queries = read_query(config, d_id)
    print("loading corpus time (h):", (time.time() - s_lc) / 3600)
    print('********************** loading model ********************** ')

    s_lm = time.time()
    model_onehop_bert = ModelOneHop(256)
    param_dict = load_checkpoint(config.onehop_bert_path)
    load_param_into_net(model_onehop_bert, param_dict)
    model_twohop_bert = ModelOneHop(448)
    param_dict2 = load_checkpoint(config.twohop_bert_path)
    load_param_into_net(model_twohop_bert, param_dict2)
    onehop = OneHopBert(config, model_onehop_bert)
    twohop = TwoHopBert(config, model_twohop_bert)

    print("loading model time (h):", (time.time() - s_lm) / 3600)
    print('********************** evaluation ********************** ')

    f_dev = open(config.dev_path, 'rb')
    dev_data = json.load(f_dev)
    f_dev.close()
    q_gold = {}
    q_2id = {}
    for onedata in dev_data:
        if onedata["question"] not in q_gold:
            q_gold[onedata["question"]] = [
                get_new_title(get_raw_title(item)) for item in onedata['path']
            ]
            q_2id[onedata["question"]] = onedata['_id']
    val, true_count, count, step = 0, 0, 0, 0
    batch_queries = split_queries(config, queries)
    output_path = []
    for _, batch in enumerate(batch_queries):
        print("###step###: ", str(step) + "_" + str(d_id))
        query = batch[0]
        temp_dict = {}
        temp_dict['q_id'] = q_2id[query]
        temp_dict['question'] = query
        gold_path = q_gold[query]
        input_ids_1, token_type_ids_1, input_mask_1 = data_generator.convert_onehop_to_features(
            batch)
        start = 0
        TOTAL = len(input_ids_1)
        split_chunk = 8
        while start < TOTAL:
            end = min(start + split_chunk - 1, TOTAL - 1)
            chunk_len = end - start + 1
            input_ids_1_ = input_ids_1[start:start + chunk_len]
            input_ids_1_ = Tensor(input_ids_1_, mstype.int32)
            token_type_ids_1_ = token_type_ids_1[start:start + chunk_len]
            token_type_ids_1_ = Tensor(token_type_ids_1_, mstype.int32)
            input_mask_1_ = input_mask_1[start:start + chunk_len]
            input_mask_1_ = Tensor(input_mask_1_, mstype.int32)
            cls_out = onehop(input_ids_1_, token_type_ids_1_, input_mask_1_)
            if start == 0:
                out = cls_out
            else:
                out = P.Concat(0)((out, cls_out))
            start = end + 1
        out = P.Squeeze(1)(out)
        onehop_prob, onehop_index = P.TopK(sorted=True)(out, config.topk)
        onehop_prob = P.Softmax()(onehop_prob)
        sample, path_raw, last_out = data_generator.get_samples(
            query, onehop_index, onehop_prob)
        input_ids_2, token_type_ids_2, input_mask_2 = data_generator.convert_twohop_to_features(
            sample)
        start_2 = 0
        TOTAL_2 = len(input_ids_2)
        split_chunk = 8
        while start_2 < TOTAL_2:
            end_2 = min(start_2 + split_chunk - 1, TOTAL_2 - 1)
            chunk_len = end_2 - start_2 + 1
            input_ids_2_ = input_ids_2[start_2:start_2 + chunk_len]
            input_ids_2_ = Tensor(input_ids_2_, mstype.int32)
            token_type_ids_2_ = token_type_ids_2[start_2:start_2 + chunk_len]
            token_type_ids_2_ = Tensor(token_type_ids_2_, mstype.int32)
            input_mask_2_ = input_mask_2[start_2:start_2 + chunk_len]
            input_mask_2_ = Tensor(input_mask_2_, mstype.int32)
            cls_out = twohop(input_ids_2_, token_type_ids_2_, input_mask_2_)
            if start_2 == 0:
                out_2 = cls_out
            else:
                out_2 = P.Concat(0)((out_2, cls_out))
            start_2 = end_2 + 1
        out_2 = P.Softmax()(out_2)
        last_out = Tensor(last_out, mstype.float32)
        out_2 = P.Mul()(out_2, last_out)
        val, true_count, topk_titles = eval_output(out_2, last_out, path_raw,
                                                   gold_path, val, true_count)
        temp_dict['topk_titles'] = topk_titles
        output_path.append(temp_dict)
        step += 1
        count += 1
    return {
        'val': val,
        'count': count,
        'true_count': true_count,
        'path': output_path
    }
示例#29
0
 def _load_weights(self, model_path: str = None) -> None:
     param_dict = load_checkpoint(model_path)
     load_param_into_net(self, param_dict)
示例#30
0
                          num_labels=number_labels,
                          use_crf=True,
                          tag_to_index=tag_to_index)
        else:
            net = BertNERModel(bert_net_cfg,
                               False,
                               number_labels,
                               use_crf=(args.use_crf.lower() == "true"))
    elif args.downstream_task == "CLS":
        net = BertCLSModel(bert_net_cfg, False, num_labels=number_labels)
    elif args.downstream_task == "SQUAD":
        net = BertSquadModel(bert_net_cfg, False)
    else:
        raise ValueError("unsupported downstream task")

    load_checkpoint(args.ckpt_file, net=net)
    net.set_train(False)

    input_ids = Tensor(np.zeros([args.batch_size, bert_net_cfg.seq_length]),
                       mstype.int32)
    input_mask = Tensor(np.zeros([args.batch_size, bert_net_cfg.seq_length]),
                        mstype.int32)
    token_type_id = Tensor(
        np.zeros([args.batch_size, bert_net_cfg.seq_length]), mstype.int32)
    label_ids = Tensor(np.zeros([args.batch_size, bert_net_cfg.seq_length]),
                       mstype.int32)

    if args.downstream_task == "NER" and args.use_crf.lower() == "true":
        input_data = [input_ids, input_mask, token_type_id, label_ids]
    else:
        input_data = [input_ids, input_mask, token_type_id]