def api_gensim_summarization(): document = RequestService().get_parameter('document') try: ratio = float(request.args.get('ratio') if 'ratio' in request.args else '') except ValueError: ratio = 0.2 try: word_count = int(request.args.get('word_count') if 'word_count' in request.args else '') except ValueError: word_count = None try: split = bool(request.args.get('split') if 'split' in request.args else 'True') except ValueError: split = True result = gensim.summarize(document=document, ratio=ratio, word_count=word_count, split=split) return jsonify(result)
def api_textblob_language_detection(): document = RequestService().get_parameter('document') result = textblob.detect_language(document=document) return jsonify(result)
def api_vader_sentiment_analysis_nlp(): document = RequestService().get_parameter('document') result = nltk.vader_sentiment_analysis(document=document) return jsonify(result)
def api_textblob_spelling_correction(): document = RequestService().get_parameter('document') result = textblob.spelling_correction(document=document) return jsonify(result)
def api_textblob_translation(): document = RequestService().get_parameter('document') language = RequestService().get_parameter('language') result = textblob.translate(document=document, language=language) return jsonify(result)
def api_spacy_similarity(): model = RequestService().get_parameter('model') document = RequestService().get_parameter('document') similarTo = RequestService().get_parameter('similarTo') result = spacy.similarity(model, document, similarTo) return jsonify(result)
def api_textblob_nlp(): document = RequestService().get_parameter('document') result = textblob.nlp(document=document) return jsonify(result)
def api_allennlp_open_information_extraction(): document = RequestService().get_parameter('document') model = allenNlp.open_information_extraction(document=document) return jsonify(model)
def api_spacy(): model = RequestService().get_parameter('model') document = RequestService().get_parameter('document') result = spacy.nlp(model, document) return jsonify(result)
def api_allennlp_coreference_resolution(): document = RequestService().get_parameter('document') model = allenNlp.coreference_resolution(document=document) return jsonify(model)
def api_allennlp_dependency_parsing(): document = RequestService().get_parameter('document') model = allenNlp.dependency_parsing(document=document) return jsonify(model)
def api_allennlp_textual_entailment(): document = RequestService().get_parameter('document') hypothesis = RequestService().get_parameter('hypothesis') model = allenNlp.textual_entailment(document=document, hypothesis=hypothesis) return jsonify(model)
def api_allennlp_machine_comprehension(): document = RequestService().get_parameter('document') question = RequestService().get_parameter('question') model = allenNlp.machine_comprehension(document=document, question=question) return jsonify(model)
def api_allennlp_semantic_role_labeling(): document = RequestService().get_parameter('document') model = allenNlp.semantic_role_labeling(document=document) return jsonify(model)
def api_allennlp_named_entity_recognition(): document = RequestService().get_parameter('document') model = allenNlp.named_entity_recognition(document=document) return jsonify(model)
def api_allennlp_event2mind(): document = RequestService().get_parameter('document') model = allenNlp.event2mind(document=document) return jsonify(model)