[test_loss, test_acc, test_prediction]) gradient_fn = theano.function([input_var, target_var], gradient) # The training loop print("Starting training...") num_epochs = 20 for epoch in range(num_epochs): # In each epoch, we do a full pass over the training data: train_err = 0 train_batches = 0 start_time = time.time() for batch in mini_batch.iterate_minibatches(X_train, y_train, 500, shuffle=True): inputs, targets = batch train_err += train_fn(inputs, targets) train_batches += 1 # And a full pass over the validation data: val_err = 0 val_acc = 0 val_batches = 0 for batch in mini_batch.iterate_minibatches(X_val, y_val, 500, shuffle=False):
view_fn = theano.function([input_var], test_reconstruct) # The training loop print("Starting training...") num_epochs = 20 for epoch in range(num_epochs): # In each epoch, we do a full pass over the training data: train_err = 0 train_batches = 0 start_time = time.time() for batch in mini_batch.iterate_minibatches(flower_train, 100, shuffle=True): inputs = batch train_err += train_fn(inputs) train_batches += 1 # Then we print the results for this epoch: print("Epoch {} of {} took {:.3f}s".format(epoch + 1, num_epochs, time.time() - start_time)) print(" training loss:\t\t{:.6f}".format(train_err / train_batches)) #print(" validation loss:\t\t{:.6f}".format(val_err / val_batches)) ################### View reconstruction###########