def train(train_data): G = train_data[0] features = train_data[1] labels = train_data[2] train_nodes = train_data[3] test_nodes = train_data[4] val_nodes = train_data[5] num_classes = 2 if not features is None: # pad with dummy zero vector features = np.vstack([features, np.zeros((features.shape[1], ))]) placeholders = construct_placeholders(num_classes) minibatch = NodeMinibatchIterator(G, placeholders, labels, train_nodes, test_nodes, val_nodes, num_classes, batch_size=FLAGS.batch_size, max_degree=FLAGS.max_degree) adj_info_ph = tf.placeholder(tf.int32, shape=minibatch.adj.shape) adj_info = tf.Variable(adj_info_ph, trainable=False, name="adj_info") if FLAGS.model == 'graphsage_mean': # Create model sampler = UniformNeighborSampler(adj_info) if FLAGS.samples_3 != 0: layer_infos = [ SAGEInfo("node", sampler, FLAGS.samples_1, FLAGS.dim_1), SAGEInfo("node", sampler, FLAGS.samples_2, FLAGS.dim_2), SAGEInfo("node", sampler, FLAGS.samples_3, FLAGS.dim_2) ] elif FLAGS.samples_2 != 0: layer_infos = [ SAGEInfo("node", sampler, FLAGS.samples_1, FLAGS.dim_1), SAGEInfo("node", sampler, FLAGS.samples_2, FLAGS.dim_2) ] else: layer_infos = [ SAGEInfo("node", sampler, FLAGS.samples_1, FLAGS.dim_1) ] model = SupervisedGraphsage(num_classes, placeholders, features, adj_info, minibatch.deg, layer_infos, model_size=FLAGS.model_size, sigmoid_loss=FLAGS.sigmoid, identity_dim=FLAGS.identity_dim, logging=True) config = tf.ConfigProto(log_device_placement=FLAGS.log_device_placement) config.gpu_options.allow_growth = True config.allow_soft_placement = True # Initialize session sess = tf.Session(config=config) merged = tf.summary.merge_all() summary_writer = tf.summary.FileWriter(results_folder, sess.graph) # Init variables sess.run(tf.global_variables_initializer(), feed_dict={adj_info_ph: minibatch.adj}) # Train model total_steps = 0 avg_time = 0.0 epoch_val_costs = [] train_adj_info = tf.assign(adj_info, minibatch.adj) val_adj_info = tf.assign(adj_info, minibatch.test_adj) for epoch in range(FLAGS.epochs): minibatch.shuffle() iter = 0 print('Epoch: %04d' % (epoch + 1)) epoch_val_costs.append(0) while not minibatch.end(): # Construct feed dictionary feed_dict, labels, batch = minibatch.next_minibatch_feed_dict() feed_dict.update({placeholders['dropout']: FLAGS.dropout}) t = time.time() # Training step outs = sess.run([merged, model.opt_op, model.loss, model.preds], feed_dict=feed_dict) train_cost = outs[2] if iter % FLAGS.validate_iter == 0: # Validation sess.run(val_adj_info.op) if FLAGS.validate_batch_size == -1: val_cost, acc, prec, rec, f1_score, conf_mat = incremental_evaluate( sess, model, minibatch, FLAGS.batch_size) else: val_cost, acc, prec, rec, f1_score, conf_mat, fpr, tpr, thresholds = evaluate( sess, model, minibatch, FLAGS.validate_batch_size) sess.run(train_adj_info.op) epoch_val_costs[-1] += val_cost if total_steps % FLAGS.print_every == 0: summary_writer.add_summary(outs[0], total_steps) # Print results avg_time = (avg_time * total_steps + time.time() - t) / (total_steps + 1) if total_steps % FLAGS.print_every == 0: train_acc, train_prec, train_rec, train_f1_score, train_conf_mat, fpr, tpr, thresholds = eval( labels, outs[-1]) print("Iter:", '%04d' % iter, "train_loss=", "{:.5f}".format(train_cost), "train_accuracy=", "{:.5f}".format(train_acc), "train_precision=", "{:.5f}".format(train_prec), "train_recall=", "{:.5f}".format(train_rec), "train_f1_score=", "{:.5f}".format(train_f1_score)) with open(results_folder + "/train_stats.txt", "a") as fp: fp.write( "Iter:{:d} loss={:.5f} acc={:.5f} prec={:.5f} rec={:.5f} f1={:.5f} tp={:d} fp={:d} fn={:d} tn={:d}\n" .format(iter, train_cost, train_acc, train_prec, train_rec, train_f1_score, train_conf_mat[0][0], train_conf_mat[0][1], train_conf_mat[1][0], train_conf_mat[1][1])) iter += 1 total_steps += 1 if total_steps > int(FLAGS.max_total_steps): break if total_steps > int(FLAGS.max_total_steps): break print("Optimization Finished!") sess.run(val_adj_info.op) val_cost, val_acc, val_prec, val_rec, val_f1_score, val_conf_mat = incremental_evaluate( sess, model, minibatch, FLAGS.batch_size) print("Full validation stats:", "val_cost=", "{:.5f}".format(val_cost), "val_acc=", "{:.5f}".format(val_acc), "val_prec=", "{:.5f}".format(val_prec), "val_rec=", "{:.5f}".format(val_rec), "val_f1_score=", "{:.5f}".format(val_f1_score), "val_conf_mat=", val_conf_mat) with open(results_folder + "/val_stats.txt", "a") as fp: fp.write( "loss={:.5f} acc={:.5f} prec={:.5f} rec={:.5f} f1={:.5f} tp={:d} fp={:d} fn={:d} tn={:d} time=={:s}\n" .format(val_cost, val_acc, val_prec, val_rec, val_f1_score, val_conf_mat[0][0], val_conf_mat[0][1], val_conf_mat[1][0], val_conf_mat[1][1], current_time)) print("Writing test set stats to file") test_cost, test_acc, test_prec, test_rec, test_f1_score, test_conf_mat = incremental_evaluate( sess, model, minibatch, FLAGS.batch_size, test=True) print("Full test stats:", "test_cost=", "{:.5f}".format(test_cost), "test_acc=", "{:.5f}".format(test_acc), "test_prec=", "{:.5f}".format(test_prec), "test_rec=", "{:.5f}".format(test_rec), "test_f1_score=", "{:.5f}".format(test_f1_score), "test_conf_mat=", test_conf_mat) with open(results_folder + "/test_stats.txt", "a") as fp: fp.write( "loss={:.5f} acc={:.5f} prec={:.5f} rec={:.5f} f1={:.5f} tp={:d} fp={:d} fn={:d} tn={:d} time=={:s}\n" .format(test_cost, test_acc, test_prec, test_rec, test_f1_score, test_conf_mat[0][0], test_conf_mat[0][1], test_conf_mat[1][0], test_conf_mat[1][1], current_time))
def train(train_data, test_data=None): G = train_data[0] features = train_data[1] id_map = train_data[2] class_map = train_data[4] if isinstance(list(class_map.values())[0], list): num_classes = len(list(class_map.values())[0]) else: num_classes = len(set(class_map.values())) if not features is None: # pad with dummy zero vector features = np.vstack([features, np.zeros((features.shape[1], ))]) context_pairs = train_data[3] if FLAGS.random_context else None placeholders = construct_placeholders(num_classes) minibatch = NodeMinibatchIterator(G, id_map, placeholders, class_map, num_classes, batch_size=FLAGS.batch_size, max_degree=FLAGS.max_degree, context_pairs=context_pairs) adj_info_ph = tf.placeholder(tf.int32, shape=minibatch.adj.shape) adj_info = tf.Variable(adj_info_ph, trainable=False, name="adj_info") if FLAGS.model == 'graphsage_mean': # Create model sampler = UniformNeighborSampler(adj_info) if FLAGS.samples_3 != 0: layer_infos = [ SAGEInfo("node", sampler, FLAGS.samples_1, FLAGS.dim_1), SAGEInfo("node", sampler, FLAGS.samples_2, FLAGS.dim_2), SAGEInfo("node", sampler, FLAGS.samples_3, FLAGS.dim_2) ] elif FLAGS.samples_2 != 0: layer_infos = [ SAGEInfo("node", sampler, FLAGS.samples_1, FLAGS.dim_1), SAGEInfo("node", sampler, FLAGS.samples_2, FLAGS.dim_2) ] else: layer_infos = [ SAGEInfo("node", sampler, FLAGS.samples_1, FLAGS.dim_1) ] model = SupervisedGraphsage(num_classes, placeholders, features, adj_info, minibatch.deg, layer_infos, model_size=FLAGS.model_size, sigmoid_loss=FLAGS.sigmoid, identity_dim=FLAGS.identity_dim, logging=True) elif FLAGS.model == 'gcn': # Create model sampler = UniformNeighborSampler(adj_info) layer_infos = [ SAGEInfo("node", sampler, FLAGS.samples_1, 2 * FLAGS.dim_1), SAGEInfo("node", sampler, FLAGS.samples_2, 2 * FLAGS.dim_2) ] model = SupervisedGraphsage(num_classes, placeholders, features, adj_info, minibatch.deg, layer_infos=layer_infos, aggregator_type="gcn", model_size=FLAGS.model_size, concat=False, sigmoid_loss=FLAGS.sigmoid, identity_dim=FLAGS.identity_dim, logging=True) elif FLAGS.model == 'graphsage_seq': sampler = UniformNeighborSampler(adj_info) layer_infos = [ SAGEInfo("node", sampler, FLAGS.samples_1, FLAGS.dim_1), SAGEInfo("node", sampler, FLAGS.samples_2, FLAGS.dim_2) ] model = SupervisedGraphsage(num_classes, placeholders, features, adj_info, minibatch.deg, layer_infos=layer_infos, aggregator_type="seq", model_size=FLAGS.model_size, sigmoid_loss=FLAGS.sigmoid, identity_dim=FLAGS.identity_dim, logging=True) elif FLAGS.model == 'graphsage_maxpool': sampler = UniformNeighborSampler(adj_info) layer_infos = [ SAGEInfo("node", sampler, FLAGS.samples_1, FLAGS.dim_1), SAGEInfo("node", sampler, FLAGS.samples_2, FLAGS.dim_2) ] model = SupervisedGraphsage(num_classes, placeholders, features, adj_info, minibatch.deg, layer_infos=layer_infos, aggregator_type="maxpool", model_size=FLAGS.model_size, sigmoid_loss=FLAGS.sigmoid, identity_dim=FLAGS.identity_dim, logging=True) elif FLAGS.model == 'graphsage_meanpool': sampler = UniformNeighborSampler(adj_info) layer_infos = [ SAGEInfo("node", sampler, FLAGS.samples_1, FLAGS.dim_1), SAGEInfo("node", sampler, FLAGS.samples_2, FLAGS.dim_2) ] model = SupervisedGraphsage(num_classes, placeholders, features, adj_info, minibatch.deg, layer_infos=layer_infos, aggregator_type="meanpool", model_size=FLAGS.model_size, sigmoid_loss=FLAGS.sigmoid, identity_dim=FLAGS.identity_dim, logging=True) else: raise Exception('Error: model name unrecognized.') config = tf.ConfigProto(log_device_placement=FLAGS.log_device_placement) config.gpu_options.allow_growth = True #config.gpu_options.per_process_gpu_memory_fraction = GPU_MEM_FRACTION config.allow_soft_placement = True # Initialize session sess = tf.Session(config=config) merged = tf.summary.merge_all() summary_writer = tf.summary.FileWriter(log_dir(), sess.graph) # Init variables sess.run(tf.global_variables_initializer(), feed_dict={adj_info_ph: minibatch.adj}) # Train model total_steps = 0 avg_time = 0.0 epoch_val_costs = [] train_adj_info = tf.assign(adj_info, minibatch.adj) val_adj_info = tf.assign(adj_info, minibatch.test_adj) for epoch in range(FLAGS.epochs): minibatch.shuffle() iter = 0 print('Epoch: %04d' % (epoch + 1)) epoch_val_costs.append(0) while not minibatch.end(): # Construct feed dictionary feed_dict, labels = minibatch.next_minibatch_feed_dict() feed_dict.update({placeholders['dropout']: FLAGS.dropout}) t = time.time() # Training step outs = sess.run([merged, model.opt_op, model.loss, model.preds], feed_dict=feed_dict) train_cost = outs[2] if iter % FLAGS.validate_iter == 0: # Validation sess.run(val_adj_info.op) if FLAGS.validate_batch_size == -1: val_cost, val_f1_mic, val_f1_mac, duration = incremental_evaluate( sess, model, minibatch, FLAGS.batch_size) else: val_cost, val_f1_mic, val_f1_mac, duration = evaluate( sess, model, minibatch, FLAGS.validate_batch_size) sess.run(train_adj_info.op) epoch_val_costs[-1] += val_cost if total_steps % FLAGS.print_every == 0: summary_writer.add_summary(outs[0], total_steps) # Print results avg_time = (avg_time * total_steps + time.time() - t) / (total_steps + 1) if total_steps % FLAGS.print_every == 0: train_f1_mic, train_f1_mac = calc_f1(labels, outs[-1]) print("Iter:", '%04d' % iter, "train_loss=", "{:.5f}".format(train_cost), "train_f1_mic=", "{:.5f}".format(train_f1_mic), "train_f1_mac=", "{:.5f}".format(train_f1_mac), "val_loss=", "{:.5f}".format(val_cost), "val_f1_mic=", "{:.5f}".format(val_f1_mic), "val_f1_mac=", "{:.5f}".format(val_f1_mac), "time=", "{:.5f}".format(avg_time)) iter += 1 total_steps += 1 if total_steps > FLAGS.max_total_steps: break if total_steps > FLAGS.max_total_steps: break print("Optimization Finished!") sess.run(val_adj_info.op) val_cost, val_f1_mic, val_f1_mac, duration = incremental_evaluate( sess, model, minibatch, FLAGS.batch_size) print("Full validation stats:", "loss=", "{:.5f}".format(val_cost), "f1_micro=", "{:.5f}".format(val_f1_mic), "f1_macro=", "{:.5f}".format(val_f1_mac), "time=", "{:.5f}".format(duration)) with open(log_dir() + "val_stats.txt", "w") as fp: fp.write( "loss={:.5f} f1_micro={:.5f} f1_macro={:.5f} time={:.5f}".format( val_cost, val_f1_mic, val_f1_mac, duration)) print("Writing test set stats to file (don't peak!)") val_cost, val_f1_mic, val_f1_mac, duration = incremental_evaluate( sess, model, minibatch, FLAGS.batch_size, test=True) with open(log_dir() + "test_stats.txt", "w") as fp: fp.write("loss={:.5f} f1_micro={:.5f} f1_macro={:.5f}".format( val_cost, val_f1_mic, val_f1_mac))
def train(self, train_data, test_data=None): print("Training model...") timer = Timer() timer.tic() G = train_data[0] features = train_data[1] id_map = train_data[2] class_map = train_data[4] if isinstance(list(class_map.values())[0], list): num_classes = len(list(class_map.values())[0]) else: num_classes = len(set(class_map.values())) if not features is None: # pad with dummy zero vector features = np.vstack([features, np.zeros((features.shape[1], ))]) placeholders = self._construct_placeholders(num_classes) minibatch = NodeMinibatchIterator(G, id_map, placeholders, class_map, num_classes, batch_size=self.batch_size, max_degree=self.max_degree) adj_info_ph = tf.compat.v1.placeholder(tf.int32, shape=minibatch.adj.shape) adj_info = tf.Variable(adj_info_ph, trainable=False, name="adj_info") model = self._create_model(num_classes, placeholders, features, adj_info, minibatch) config = tf.compat.v1.ConfigProto( log_device_placement=self.log_device_placement) config.gpu_options.allow_growth = True config.allow_soft_placement = True # Initialize session sess = tf.compat.v1.Session(config=config) merged = tf.compat.v1.summary.merge_all() # summary_writer = tf.summary.FileWriter(self._log_dir(), sess.graph) # Initialize model saver saver = tf.compat.v1.train.Saver(max_to_keep=self.epochs) # Init variables sess.run(tf.compat.v1.global_variables_initializer(), feed_dict={adj_info_ph: minibatch.adj}) # Train model total_steps = 0 avg_time = 0.0 epoch_val_costs = [] train_losses = [] validation_losses = [] train_adj_info = tf.compat.v1.assign(adj_info, minibatch.adj) val_adj_info = tf.compat.v1.assign(adj_info, minibatch.test_adj) for epoch in range(self.epochs): minibatch.shuffle() iter = 0 print('Epoch: %04d' % (epoch)) epoch_val_costs.append(0) train_loss_epoch = [] validation_loss_epoch = [] while not minibatch.end(): # Construct feed dictionary feed_dict, labels = minibatch.next_minibatch_feed_dict() feed_dict.update({placeholders['dropout']: self.dropout}) t = time.time() # Training step outs = sess.run( [merged, model.opt_op, model.loss, model.preds], feed_dict=feed_dict) train_cost = outs[2] train_loss_epoch.append(train_cost) if iter % self.validate_iter == 0: # Validation sess.run(val_adj_info.op) if self.validate_batch_size == -1: val_cost, val_f1_mic, val_f1_mac, duration = self._incremental_evaluate( sess, model, minibatch, self.batch_size) else: val_cost, val_f1_mic, val_f1_mac, duration = self._evaluate( sess, model, minibatch, self.validate_batch_size) sess.run(train_adj_info.op) epoch_val_costs[-1] += val_cost validation_loss_epoch.append(val_cost) # if total_steps % self.print_every == 0: # summary_writer.add_summary(outs[0], total_steps) # Print results avg_time = (avg_time * total_steps + time.time() - t) / (total_steps + 1) if total_steps % self.print_every == 0: train_f1_mic, train_f1_mac = self._calc_f1( labels, outs[-1]) print("Iter:", '%04d' % iter, "train_loss=", "{:.5f}".format(train_cost), "train_f1_mic=", "{:.5f}".format(train_f1_mic), "train_f1_mac=", "{:.5f}".format(train_f1_mac), "val_loss=", "{:.5f}".format(val_cost), "val_f1_mic=", "{:.5f}".format(val_f1_mic), "val_f1_mac=", "{:.5f}".format(val_f1_mac), "time=", "{:.5f}".format(avg_time)) iter += 1 total_steps += 1 if total_steps > self.max_total_steps: break # Keep track of train and validation losses per epoch train_losses.append(sum(train_loss_epoch) / len(train_loss_epoch)) validation_losses.append( sum(validation_loss_epoch) / len(validation_loss_epoch)) # If the epoch has the lowest validation loss so far if validation_losses[-1] == min(validation_losses): print( "Minimum validation loss so far ({}) at epoch {}.".format( validation_losses[-1], epoch)) # Save model at each epoch print("Saving model at epoch {}.".format(epoch)) saver.save(sess, os.path.join(self._log_dir(), "model.ckpt")) if total_steps > self.max_total_steps: break print("Optimization Finished!") training_time = timer.toc() self._plot_losses(train_losses, validation_losses) self._print_stats(train_losses, validation_losses, training_time) sess.run(val_adj_info.op) val_cost, val_f1_mic, val_f1_mac, duration = self._incremental_evaluate( sess, model, minibatch, self.batch_size) print("Full validation stats:", "loss=", "{:.5f}".format(val_cost), "f1_micro=", "{:.5f}".format(val_f1_mic), "f1_macro=", "{:.5f}".format(val_f1_mac), "time=", "{:.5f}".format(duration)) with open(self._log_dir() + "val_stats.txt", "w") as fp: fp.write("loss={:.5f} f1_micro={:.5f} f1_macro={:.5f} time={:.5f}". format(val_cost, val_f1_mic, val_f1_mac, duration))