def chooseAction(self, gameState): print("Agent " + str(self.index) + " choosing an action") minimaxMod = MinimaxModule(self) minimaxMod.setImpatience(float(self.heuristicWeights['attackModule_percentImpatience'])/100.0) minimaxVals = minimaxMod.getMinimaxValues(gameState, self.index, self.isRed, 0.1) bestActions = [] bestVal = 0 for pair in minimaxVals: if(bestVal < pair[1]): bestActions = [] if(len(bestActions) == 0 or (bestVal == pair[1])): bestActions.append(pair[0]) bestVal = pair[1] if(len(bestActions) == 0): return gameState.getLegalActions(self.index)[0] return random.choice(bestActions)
def chooseAction(self, gameState): self.updateInference(gameState) minimaxMod = MinimaxModule(self) minimaxMod.setImpatience(0.1) minimaxVals = minimaxMod.getMinimaxValues(gameState, self.index, self.isRed, 0.8) bestActions = [] bestVal = 0 for pair in minimaxVals: if(bestVal < pair[1]): bestActions = [] if(len(bestActions) == 0 or (bestVal == pair[1])): bestActions.append(pair[0]) bestVal = pair[1] if(len(bestActions) == 0): return gameState.getLegalActions(self.index)[0] return random.choice(bestActions)
def chooseAction(self, gameState): self.updateInference(gameState) minimaxMod = MinimaxModule(self) minimaxMod.setImpatience(0.1) minimaxVals = minimaxMod.getMinimaxValues(gameState, self.index, self.isRed, 0.8) bestActions = [] bestVal = 0 for pair in minimaxVals: if (bestVal < pair[1]): bestActions = [] if (len(bestActions) == 0 or (bestVal == pair[1])): bestActions.append(pair[0]) bestVal = pair[1] if (len(bestActions) == 0): return gameState.getLegalActions(self.index)[0] return random.choice(bestActions)
def chooseAction(self, gameState): print("Agent " + str(self.index) + " choosing an action") minimaxMod = MinimaxModule(self) minimaxMod.setImpatience( float(self.heuristicWeights['attackModule_percentImpatience']) / 100.0) minimaxVals = minimaxMod.getMinimaxValues(gameState, self.index, self.isRed, 0.1) bestActions = [] bestVal = 0 for pair in minimaxVals: if (bestVal < pair[1]): bestActions = [] if (len(bestActions) == 0 or (bestVal == pair[1])): bestActions.append(pair[0]) bestVal = pair[1] if (len(bestActions) == 0): return gameState.getLegalActions(self.index)[0] return random.choice(bestActions)