else: regions = [ cr + '_L' for cr in analysis.cr_regions ] + \ [ cr + '_H' for cr in analysis.cr_regions ] + \ [ vr + '_L' for vr in analysis.vr_regions ] + \ [ vr + '_H' for vr in analysis.vr_regions ] set_atlas_style() set_palette() for region in regions: selection = getattr(regions_, region) total_bkg = 0 for bkg in backgrounds: total_bkg += get_events(bkg, selection=selection, lumi='data').mean gl_min = 1146 gl_max = 2050 n1_min = 147 n1_max = 2050 gl_bins = (gl_max - gl_min) / 25 n1_bins = (n1_max - n1_min) / 25 hmap = ROOT.TH2F('hmap', 'hmap', gl_bins, gl_min, gl_max, n1_bins, n1_min, n1_max) hmap.SetDirectory(0) ROOT.SetOwnership(hmap, False) largest_cont = 0
for iregion, region in enumerate(regions): if sample == 'data' and region == 'SR': continue sel = getattr(regions_, region) histograms[0].GetXaxis().SetBinLabel(iregion + 1, region) print region print '-----' for idx, ver in enumerate(versions): evts = get_events(sample, selection=sel, version=ver, scale=args.scale, lumi='data') print ver, evts histograms[idx].SetBinContent(iregion + 1, evts.mean) set_style(histograms[idx], msize=1, lwidth=2, color=colors[idx]) # Plot c = ROOT.TCanvas() cup = ROOT.TPad("u", "u", 0., 0.305, 0.99, 1) cdown = ROOT.TPad("d", "d", 0., 0.01, 0.99, 0.295) cup.SetLogy()
hist.SetBinErrorOption(ROOT.TH1.kPoisson) for iregion, region in enumerate(regions): if sample == 'data' and region == 'SR': continue sel = getattr(regions_, region) histograms[0].GetXaxis().SetBinLabel(iregion+1, region) print region for idx, ver in enumerate(versions): evts = get_events(sample, selection=sel, version=ver, scale=False) print ver, evts histograms[idx].SetBinContent(iregion+1, evts.mean) set_style(histograms[idx], msize=1, lwidth=2, color=colors[idx]) # Plot c = ROOT.TCanvas() cup = ROOT.TPad("u", "u", 0., 0.305, 0.99, 1) cdown = ROOT.TPad("d", "d", 0., 0.01, 0.99, 0.295) cup.SetLogy() cup.SetFillColor(0);
args = parser.parse_args() backgrounds = analysis.backgrounds regions = args.regions.split(',') set_atlas_style() set_palette() for region in regions: selection = getattr(regions_, region) total_bkg = 0 for bkg in backgrounds: total_bkg += get_events(bkg, selection=selection, lumi='data').mean gl_min = 1300 gl_max = 2500 n1_min = 147 n1_max = 2500 gl_bins = (gl_max - gl_min) / 30 n1_bins = (n1_max - n1_min) / 30 hmap = ROOT.TH2F('hmap', 'hmap', gl_bins, gl_min, gl_max, n1_bins, n1_min, n1_max) hmap.SetDirectory(0) ROOT.SetOwnership(hmap, False) largest_cont = 0
ROOT.SetOwnership(h_sel_srl200, False) ROOT.SetOwnership(h_sel_srl300, False) ROOT.SetOwnership(h_sel_srh, False) for (m3, mu), (mgl, mn1) in sorted(mg_gg_grid.iteritems()): name = 'GGM_GG_bhmix_%i_%i' % (m3, mu) # total events ds = get_sample_datasets(name)[0] total_events = get_sumw(ds) if total_events == 0: continue srl200_events_scaled = get_events(name, selection=SRL200, lumi='data').mean srl300_events_scaled = get_events(name, selection=SRL300, lumi='data').mean srh_events_scaled = get_events(name, selection=SRH, lumi='data').mean h_sel_srl200.Fill(mgl, mn1, round(srl200_events_scaled, 2)) h_sel_srl300.Fill(mgl, mn1, round(srl300_events_scaled, 2)) h_sel_srh.Fill(mgl, mn1, round(srh_events_scaled, 2)) srl200_events = get_events(name, selection=SRL200, scale=False).mean srl300_events = get_events(name, selection=SRL300, scale=False).mean srh_events = get_events(name, selection=SRH, scale=False).mean ## acc x eff srl200_acceff = round(srl200_events / total_events, 2) srl300_acceff = round(srl300_events / total_events, 2) srh_acceff = round(srh_events / total_events, 2)
for (m3, mu) in sorted(mass_dict.iterkeys()): mgl, mn1 = mass_dict[(int(m3), int(mu))] name = 'GGM_M3_mu_%i_%i' % (m3, mu) # total events ds = get_sample_datasets(name)[0] total_events = get_sumw(ds) if total_events == 0: continue srl_events_scaled = get_events(name, selection=SR_L, lumi='data').mean srh_events_scaled = get_events(name, selection=SR_H, lumi='data').mean sril_events_scaled = get_events(name, selection=SRincl_L, lumi='data').mean srih_events_scaled = get_events(name, selection=SRincl_H, lumi='data').mean h_sel_srl.Fill(mgl, mn1, round(srl_events_scaled, 2)) h_sel_srh.Fill(mgl, mn1, round(srh_events_scaled, 2)) h_sel_sril.Fill(mgl, mn1, round(sril_events_scaled, 2)) h_sel_srih.Fill(mgl, mn1, round(srih_events_scaled, 2)) srl_events = get_events(name, selection=SR_L, scale=False).mean srh_events = get_events(name, selection=SR_H, scale=False).mean sril_events = get_events(name, selection=SRincl_L, scale=False).mean