def test_mutate_w_custom_definitions(self): def custom_activation(x): return x register_custom_activation('custom_activation', custom_activation) register_custom_layer('Dense2', Dense, deepcopy(reference_parameters['layers']['Dense'])) layout = Layout( input_size=100, output_size=10, output_activation='softmax', block=['Dense', 'Dense2']) training = Training( objective=Objective('categorical_crossentropy'), optimizer=None, metric=Metric('categorical_accuracy'), stopping=EpochStoppingCondition(5), batch_size=250) experiment_parameters = ExperimentParameters(use_default_values=False) experiment_parameters.layout_parameter('blocks', int_param(1, 5)) experiment_parameters.layout_parameter('layers', int_param(1, 5)) experiment_parameters.layer_parameter('Dense2.output_dim', int_param(10, 500)) experiment_parameters.layer_parameter('Dropout.p', float_param(0.1, 0.9)) experiment_parameters.all_search_parameters(True) experiment = Experiment( 'test', layout, training, batch_iterator=None, test_batch_iterator=None, environment=None, parameters=experiment_parameters) check_experiment_parameters(experiment) for _ in range(10): blueprint = create_random_blueprint(experiment) mutant = mutate_blueprint( blueprint, parameters=experiment.parameters, p_mutate_layout=0, p_mutate_param=1, mutate_in_place=False) for row_idx, row in enumerate(mutant.layout.rows): for block_idx, block in enumerate(row.blocks): for layer_idx, layer in enumerate(block.layers): original_row = blueprint.layout.rows[row_idx] original_block = original_row.blocks[block_idx] original_layer = original_block.layers[layer_idx] for name, value in layer.parameters.items(): self.assertTrue( value != original_layer.parameters[name], 'Should have mutated parameter')
def test_custom_parameters(self): experiment_parameters = ExperimentParameters() experiment_parameters.layout_parameter('blocks', int_param(1, 10)) param = experiment_parameters.get_layout_parameter('blocks') self.assertTrue( 1 == param.lo and 10 == param.hi, 'Should have set values') experiment_parameters.layout_parameter('layers', int_param(1, 3)) param = experiment_parameters.get_layout_parameter('layers') self.assertTrue( 1 == param.lo and 3 == param.hi, 'Should have set values') experiment_parameters.layer_parameter('Dense.activation', string_param(['relu', 'tanh'])) param = experiment_parameters.get_layer_parameter('Dense.activation') self.assertTrue( 'relu' == param.values[0] and 'tanh' == param.values[1], 'Should have set values')
def custom_experiment_parameters(): """ Here we define the experiment parameters. We are using use_default_values=True, which will initialize all the parameters with their default values. These parameters are then fixed for the duration of the experiment and won't evolve. That means that we need to manually specify which parametres we want to test, and the possible values, either intervals or lists of values. If we want to test all the parameters and possible values, we can set use_default_values to False. In that case, random values will be generated and tested during the experiment. We can redefine some parameters if we want to fix their values. Reference parameters and default values are defined in minos.model.parameters We set the rows, blocks and layers parameters to 1 as we have specified a fixed layout. We also set the 'layout' search parameter to False to disable the layout search """ experiment_parameters = ExperimentParameters(use_default_values=True) experiment_parameters.search_parameter('layout', False) experiment_parameters.layout_parameter('blocks', 1) experiment_parameters.layout_parameter('blocks', 1) experiment_parameters.layout_parameter('layers', 1) experiment_parameters.layer_parameter('Dense.output_dim', int_param(10, 500)) experiment_parameters.layer_parameter('Dense.activation', string_param(['relu', 'tanh'])) experiment_parameters.layer_parameter('Dropout.p', float_param(0.1, 0.9)) return experiment_parameters
def test_build(self): layout = Layout(input_size=100, output_size=10, output_activation='softmax') training = Training(objective=Objective('categorical_crossentropy'), optimizer=None, metric=Metric('categorical_accuracy'), stopping=EpochStoppingCondition(10), batch_size=250) experiment_parameters = ExperimentParameters(use_default_values=False) experiment_parameters.layout_parameter('blocks', int_param(1, 5)) experiment_parameters.layout_parameter('layers', int_param(1, 5)) experiment_parameters.layer_parameter('Dense.output_dim', int_param(10, 500)) experiment_parameters.layer_parameter('Dense.activation', string_param(['relu', 'tanh'])) experiment_parameters.layer_parameter('Dropout.p', float_param(0.1, 0.9)) experiment_parameters.all_search_parameters(True) experiment = Experiment('test', layout, training, batch_iterator=None, test_batch_iterator=None, environment=None, parameters=experiment_parameters) check_experiment_parameters(experiment) for _ in range(5): blueprint1 = create_random_blueprint(experiment) model = ModelBuilder().build(blueprint1, cpu_device()) self.assertIsNotNone(model, 'Should have built a model') blueprint2 = create_random_blueprint(experiment) model = ModelBuilder().build(blueprint2, cpu_device()) self.assertIsNotNone(model, 'Should have built a model') blueprint3 = mix_blueprints(blueprint1, blueprint2, experiment_parameters) model = ModelBuilder().build(blueprint3, cpu_device()) self.assertIsNotNone(model, 'Should have built a model') blueprint4 = mutate_blueprint(blueprint1, experiment_parameters, mutate_in_place=False) model = ModelBuilder().build(blueprint4, cpu_device()) self.assertIsNotNone(model, 'Should have built a model')
def test_build_w_custom_definitions(self): def custom_activation(x): return x register_custom_activation('custom_activation', custom_activation) register_custom_layer( 'Dense2', Dense, deepcopy(reference_parameters['layers']['Dense']), True) layout = Layout(input_size=100, output_size=10, output_activation='softmax', block=['Dense2']) training = Training(objective=Objective('categorical_crossentropy'), optimizer=None, metric=Metric('categorical_accuracy'), stopping=EpochStoppingCondition(5), batch_size=250) experiment_parameters = ExperimentParameters(use_default_values=False) experiment_parameters.layout_parameter('blocks', int_param(1, 5)) experiment_parameters.layout_parameter('layers', int_param(1, 5)) experiment_parameters.layout_parameter('layer.type', string_param(['Dense2'])) experiment_parameters.layer_parameter('Dense2.output_dim', int_param(10, 500)) experiment_parameters.layer_parameter( 'Dense2.activation', string_param(['custom_activation'])) experiment_parameters.layer_parameter('Dropout.p', float_param(0.1, 0.9)) experiment_parameters.all_search_parameters(True) experiment = Experiment('test', layout, training, batch_iterator=None, test_batch_iterator=None, environment=None, parameters=experiment_parameters) check_experiment_parameters(experiment) for _ in range(5): blueprint1 = create_random_blueprint(experiment) for layer in blueprint1.layout.get_layers(): self.assertEqual('Dense2', layer.layer_type, 'Should have used custom layer') model = ModelBuilder().build(blueprint1, cpu_device()) self.assertIsNotNone(model, 'Should have built a model') blueprint2 = create_random_blueprint(experiment) for layer in blueprint2.layout.get_layers(): self.assertEqual('Dense2', layer.layer_type, 'Should have used custom layer') model = ModelBuilder().build(blueprint2, cpu_device()) self.assertIsNotNone(model, 'Should have built a model') blueprint3 = mix_blueprints(blueprint1, blueprint2, experiment_parameters) for layer in blueprint3.layout.get_layers(): self.assertEqual('Dense2', layer.layer_type, 'Should have used custom layer') model = ModelBuilder().build(blueprint3, cpu_device()) self.assertIsNotNone(model, 'Should have built a model') blueprint4 = mutate_blueprint(blueprint1, experiment_parameters, mutate_in_place=False) for layer in blueprint4.layout.get_layers(): self.assertEqual('Dense2', layer.layer_type, 'Should have used custom layer') model = ModelBuilder().build(blueprint4, cpu_device()) self.assertIsNotNone(model, 'Should have built a model')
def test_ga_search(self): with tempfile.TemporaryDirectory() as tmp_dir: epoch = 3 generations = 2 batch_size = 50 batch_iterator, test_batch_iterator, nb_classes = get_reuters_dataset( batch_size, 1000) layout = Layout(input_size=1000, output_size=nb_classes, output_activation='softmax') training = Training( objective=Objective('categorical_crossentropy'), optimizer=Optimizer(optimizer='Adam'), metric=Metric('categorical_accuracy'), stopping=EpochStoppingCondition(epoch), batch_size=batch_size) experiment_parameters = ExperimentParameters( use_default_values=False) experiment_parameters.layout_parameter('rows', 1) experiment_parameters.layout_parameter('blocks', 1) experiment_parameters.layout_parameter('layers', 1) experiment_parameters.layer_parameter('Dense.output_dim', int_param(10, 500)) experiment_parameters.all_search_parameters(True) experiment_label = 'test__reuters_experiment' experiment = Experiment(experiment_label, layout, training, batch_iterator, test_batch_iterator, CpuEnvironment(n_jobs=2, data_dir=tmp_dir), parameters=experiment_parameters) run_ga_search_experiment(experiment, population_size=2, generations=2) self.assertTrue(isfile(experiment.get_log_filename()), 'Should have logged') self.assertTrue(isfile(experiment.get_step_data_filename(0)), 'Should have logged') self.assertTrue(isfile(experiment.get_step_log_filename(0)), 'Should have logged') blueprints = load_experiment_blueprints( experiment_label, 0, Environment(data_dir=tmp_dir)) self.assertTrue( len(blueprints) > 0, 'Should have saved/loaded blueprints') model = ModelBuilder().build(blueprints[0], cpu_device()) disable_sysout() model.fit_generator( generator=batch_iterator, samples_per_epoch=batch_iterator.samples_per_epoch, nb_epoch=5, validation_data=test_batch_iterator, nb_val_samples=test_batch_iterator.sample_count) score = model.evaluate_generator( test_batch_iterator, val_samples=test_batch_iterator.sample_count) self.assertTrue(score[1] > 0, 'Should have valid score') step, population = load_experiment_checkpoint(experiment) self.assertEqual(generations - 1, step, 'Should have loaded checkpoint') self.assertIsNotNone(population, 'Should have loaded checkpoint') blueprint = load_experiment_best_blueprint( experiment.label, environment=CpuEnvironment(n_jobs=2, data_dir=tmp_dir)) model = ModelBuilder().build(blueprint, cpu_device(), compile_model=False) self.assertIsNotNone( model, 'Should have loaded and built best model from experiment')