def register_custom_definitions(): register_custom_activation('custom_activation_1', custom_activation) register_custom_layer('custom_layer_1', CustomLayer, params={ 'output_dim': int_param(10, 100), 'activation': 'custom_activation_1' })
def test_mutate_w_custom_definitions(self): def custom_activation(x): return x register_custom_activation('custom_activation', custom_activation) register_custom_layer('Dense2', Dense, deepcopy(reference_parameters['layers']['Dense'])) layout = Layout( input_size=100, output_size=10, output_activation='softmax', block=['Dense', 'Dense2']) training = Training( objective=Objective('categorical_crossentropy'), optimizer=None, metric=Metric('categorical_accuracy'), stopping=EpochStoppingCondition(5), batch_size=250) experiment_parameters = ExperimentParameters(use_default_values=False) experiment_parameters.layout_parameter('blocks', int_param(1, 5)) experiment_parameters.layout_parameter('layers', int_param(1, 5)) experiment_parameters.layer_parameter('Dense2.output_dim', int_param(10, 500)) experiment_parameters.layer_parameter('Dropout.p', float_param(0.1, 0.9)) experiment_parameters.all_search_parameters(True) experiment = Experiment( 'test', layout, training, batch_iterator=None, test_batch_iterator=None, environment=None, parameters=experiment_parameters) check_experiment_parameters(experiment) for _ in range(10): blueprint = create_random_blueprint(experiment) mutant = mutate_blueprint( blueprint, parameters=experiment.parameters, p_mutate_layout=0, p_mutate_param=1, mutate_in_place=False) for row_idx, row in enumerate(mutant.layout.rows): for block_idx, block in enumerate(row.blocks): for layer_idx, layer in enumerate(block.layers): original_row = blueprint.layout.rows[row_idx] original_block = original_row.blocks[block_idx] original_layer = original_block.layers[layer_idx] for name, value in layer.parameters.items(): self.assertTrue( value != original_layer.parameters[name], 'Should have mutated parameter')
def test_save(self): disable_sysout() def custom_activation(x): return x register_custom_activation('custom_activation', custom_activation) register_custom_layer('custom_layer', CustomLayer, {'output_dim': int_param(1, 100)}) with tempfile.TemporaryDirectory() as tmp_dir: batch_size = 50 batch_iterator, test_batch_iterator, nb_classes = get_reuters_dataset( batch_size, 1000) layout = Layout(input_size=1000, output_size=nb_classes, output_activation='softmax') training = Training( objective=Objective('categorical_crossentropy'), optimizer=Optimizer(optimizer='Adam'), metric=Metric('categorical_accuracy'), stopping=EpochStoppingCondition(10), batch_size=batch_size) experiment_parameters = ExperimentParameters( use_default_values=True) experiment_parameters.layout_parameter('rows', 1) experiment_parameters.layout_parameter('blocks', 1) experiment_parameters.layout_parameter('layers', 1) experiment_parameters.layout_parameter('block.layer_type', 'custom_layer') experiment = Experiment('test__reuters_experiment', layout, training, batch_iterator, test_batch_iterator, CpuEnvironment(n_jobs=1, data_dir=tmp_dir), parameters=experiment_parameters) blueprint = create_random_blueprint(experiment) model = ModelBuilder().build(blueprint, default_device()) model.fit_generator( generator=batch_iterator, samples_per_epoch=batch_iterator.samples_per_epoch, nb_epoch=10, validation_data=test_batch_iterator, nb_val_samples=test_batch_iterator.sample_count) filepath = join(tmp_dir, 'model') model.save(filepath) model = load_keras_model(filepath) self.assertIsNotNone(model, 'Should have loaded the model')
def test_custom_definitions(self): def custom_activation(x): return x register_custom_activation('custom_activation', custom_activation) register_custom_layer('Dense2', Dense, dict(test='test')) experiment_parameters = ExperimentParameters(use_default_values=False) custom_params = experiment_parameters.get_layer_parameter('Dense2') self.assertIsNotNone( custom_params, 'Should have registered custom layer') self.assertTrue( 'test' in custom_params, 'Should have registered custom layer params') activations = experiment_parameters.get_layer_parameter('Dense.activation') self.assertTrue( 'custom_activation' in activations.values, 'Should have registered custom_activation')
def test_build_w_custom_definitions(self): def custom_activation(x): return x register_custom_activation('custom_activation', custom_activation) register_custom_layer( 'Dense2', Dense, deepcopy(reference_parameters['layers']['Dense']), True) layout = Layout(input_size=100, output_size=10, output_activation='softmax', block=['Dense2']) training = Training(objective=Objective('categorical_crossentropy'), optimizer=None, metric=Metric('categorical_accuracy'), stopping=EpochStoppingCondition(5), batch_size=250) experiment_parameters = ExperimentParameters(use_default_values=False) experiment_parameters.layout_parameter('blocks', int_param(1, 5)) experiment_parameters.layout_parameter('layers', int_param(1, 5)) experiment_parameters.layout_parameter('layer.type', string_param(['Dense2'])) experiment_parameters.layer_parameter('Dense2.output_dim', int_param(10, 500)) experiment_parameters.layer_parameter( 'Dense2.activation', string_param(['custom_activation'])) experiment_parameters.layer_parameter('Dropout.p', float_param(0.1, 0.9)) experiment_parameters.all_search_parameters(True) experiment = Experiment('test', layout, training, batch_iterator=None, test_batch_iterator=None, environment=None, parameters=experiment_parameters) check_experiment_parameters(experiment) for _ in range(5): blueprint1 = create_random_blueprint(experiment) for layer in blueprint1.layout.get_layers(): self.assertEqual('Dense2', layer.layer_type, 'Should have used custom layer') model = ModelBuilder().build(blueprint1, cpu_device()) self.assertIsNotNone(model, 'Should have built a model') blueprint2 = create_random_blueprint(experiment) for layer in blueprint2.layout.get_layers(): self.assertEqual('Dense2', layer.layer_type, 'Should have used custom layer') model = ModelBuilder().build(blueprint2, cpu_device()) self.assertIsNotNone(model, 'Should have built a model') blueprint3 = mix_blueprints(blueprint1, blueprint2, experiment_parameters) for layer in blueprint3.layout.get_layers(): self.assertEqual('Dense2', layer.layer_type, 'Should have used custom layer') model = ModelBuilder().build(blueprint3, cpu_device()) self.assertIsNotNone(model, 'Should have built a model') blueprint4 = mutate_blueprint(blueprint1, experiment_parameters, mutate_in_place=False) for layer in blueprint4.layout.get_layers(): self.assertEqual('Dense2', layer.layer_type, 'Should have used custom layer') model = ModelBuilder().build(blueprint4, cpu_device()) self.assertIsNotNone(model, 'Should have built a model')