示例#1
0
def lstm_step(x, prev_h, prev_c, Wx, Wh, b):
    """
    Forward pass for a single timestep of an LSTM.

    The input data has dimension D, the hidden state has dimension H, and we use
    a minibatch size of N.

    Inputs:
    - x: Input data, of shape (N, D)
    - prev_h: Previous hidden state, of shape (N, H)
    - prev_c: previous cell state, of shape (N, H)
    - Wx: Input-to-hidden weights, of shape (D, 4H)
    - Wh: Hidden-to-hidden weights, of shape (H, 4H)
    - b: Biases, of shape (4H,)

    Returns a tuple of:
    - next_h: Next hidden state, of shape (N, H)
    - next_c: Next cell state, of shape (N, H)
    """
    N, H = prev_c.shape
    # 1. activation vector
    a = np.dot(x, Wx) + np.dot(prev_h, Wh) + b
    # 2. gate fuctions
    i = sigmoid(a[:, 0:H])
    f = sigmoid(a[:, H:2 * H])
    o = sigmoid(a[:, 2 * H:3 * H])
    g = np.tanh(a[:, 3 * H:4 * H])
    # 3. next cell state
    next_c = f * prev_c + i * g
    next_h = o * np.tanh(next_c)
    return next_h, next_c
示例#2
0
def lstm_step(x, prev_h, prev_c, Wx, Wh, b):
    """
    Forward pass for a single timestep of an LSTM.

    The input data has dimension D, the hidden state has dimension H, and we use
    a minibatch size of N.

    Inputs:
    - x: Input data, of shape (N, D)
    - prev_h: Previous hidden state, of shape (N, H)
    - prev_c: previous cell state, of shape (N, H)
    - Wx: Input-to-hidden weights, of shape (D, 4H)
    - Wh: Hidden-to-hidden weights, of shape (H, 4H)
    - b: Biases, of shape (4H,)

    Returns a tuple of:
    - next_h: Next hidden state, of shape (N, H)
    - next_c: Next cell state, of shape (N, H)
    """
    N, H = prev_c.shape
    # 1. activation vector
    a = np.dot(x, Wx) + np.dot(prev_h, Wh) + b
    # 2. gate fuctions
    i = sigmoid(a[:, 0:H])
    f = sigmoid(a[:, H:2*H])
    o = sigmoid(a[:, 2*H:3*H])
    g = np.tanh(a[:, 3*H:4*H])
    # 3. next cell state
    next_c = f * prev_c + i * g
    next_h = o * np.tanh(next_c)
    return next_h, next_c
示例#3
0
 def update_lstm(input, hiddens, cells, weights):
     """One iteration of an LSTM layer."""
     change = np.tanh(activations(weights.change, input, hiddens))
     forget = sigmoid(activations(weights.forget, input, cells, hiddens))
     ingate = sigmoid(activations(weights.ingate, input, cells, hiddens))
     cells = cells * forget + ingate * change
     outgate = sigmoid(activations(weights.outgate, input, cells, hiddens))
     hiddens = outgate * np.tanh(cells)
     return hiddens, cells
示例#4
0
文件: lstm.py 项目: Vanova/minpy
 def update_lstm(input, hiddens, cells, weights):
     """One iteration of an LSTM layer."""
     change  = np.tanh(activations(weights.change, input, hiddens))
     forget  = sigmoid(activations(weights.forget, input, cells, hiddens))
     ingate  = sigmoid(activations(weights.ingate, input, cells, hiddens))
     cells   = cells * forget + ingate * change
     outgate = sigmoid(activations(weights.outgate, input, cells, hiddens))
     hiddens = outgate * np.tanh(cells)
     return hiddens, cells
def get_action(params, x, continuous_a):
    x = x[np.newaxis, :]
    x = np.tanh(x.dot(params[0]) + params[1])
    x = np.tanh(x.dot(params[2]) + params[3])
    x = x.dot(params[4]) + params[5]
    if not continuous_a[0]:
        return np.argmax(x, axis=1)[0]  # for discrete action
    else:
        return continuous_a[1] * np.tanh(x)[0]  # for continuous action
示例#6
0
文件: layers.py 项目: robingong/minpy
def gru_step(x, prev_h, Wx, Wh, b, Wxh, Whh, bh):
    """
    Forward pass for a single timestep of an GRU.

    The input data has dimentsion D, the hidden state has dimension H, and we
    use a minibatch size of N.
    
    Parameters
    ----------
    x : Input data, of shape (N, D)
    prev_h : Previous hidden state, of shape (N, H)
    prev_c : Previous hidden state, of shape (N, H)
    Wx : Input-to-hidden weights for r and z gates, of shape (D, 2H)
    Wh : Hidden-to-hidden weights for r and z gates, of shape (H, 2H)
    b : Biases for r an z gates, of shape (2H,)
    Wxh : Input-to-hidden weights for h', of shape (D, H)
    Whh : Hidden-to-hidden weights for h', of shape (H, H)
    bh : Biases, of shape (H,)

    Returns
    -------
    next_h : Next hidden state, of shape (N, H)

    Notes
    -----
    Implementation follows
    http://jmlr.org/proceedings/papers/v37/jozefowicz15.pdf
    """
    N, H = prev_h.shape
    a = sigmoid(np.dot(x, Wx) + np.dot(prev_h, Wh) + b)
    r = a[:, 0:H]
    z = a[:, H:2*H]
    h_m = np.tanh(np.dot(x, Wxh) + np.dot(r * prev_h, Whh) + bh)
    next_h = z * prev_h + (1 - z) * h_m
    return next_h
def rnn_step_forward(x, prev_h, Wx, Wh, b):
    """
  Run the forward pass for a single timestep of a vanilla RNN that uses a tanh
  activation function.
  The input data has dimension D, the hidden state has dimension H, and we use
  a minibatch size of N.
  Inputs:
  - x: Input data for this timestep, of shape (N, D).
  - prev_h: Hidden state from previous timestep, of shape (N, H)
  - Wx: Weight matrix for input-to-hidden connections, of shape (D, H)
  - Wh: Weight matrix for hidden-to-hidden connections, of shape (H, H)
  - b: Biases of shape (H,)
  Returns a tuple of:
  - next_h: Next hidden state, of shape (N, H)
  """
    next_h = np.tanh(x.dot(Wx) + prev_h.dot(Wh) + b)
    return next_h
示例#8
0
def gru_step(x, prev_h, Wx, Wh, b, Wxh, Whh, bh):
    """
    Forward pass for a single timestep of an GRU.

    The input data has dimentsion D, the hidden state has dimension H, and we
    use a minibatch size of N.
    
    Parameters
    ----------
    x
        Input data, of shape (N, D)
    prev_h
        Previous hidden state, of shape (N, H)
    prev_c
        Previous hidden state, of shape (N, H)
    Wx
        Input-to-hidden weights for r and z gates, of shape (D, 2H)
    Wh
        Hidden-to-hidden weights for r and z gates, of shape (H, 2H)
    b
        Biases for r an z gates, of shape (2H,)
    Wxh
        Input-to-hidden weights for h', of shape (D, H)
    Whh
        Hidden-to-hidden weights for h', of shape (H, H)
    bh
        Biases, of shape (H,)

    Returns
    -------
    next_h
        Next hidden state, of shape (N, H)

    Notes
    -----
    Implementation follows
    http://jmlr.org/proceedings/papers/v37/jozefowicz15.pdf
    """
    N, H = prev_h.shape
    a = sigmoid(np.dot(x, Wx) + np.dot(prev_h, Wh) + b)
    r = a[:, 0:H]
    z = a[:, H:2*H]
    h_m = np.tanh(np.dot(x, Wxh) + np.dot(r * prev_h, Whh) + bh)
    next_h = z * prev_h + (1 - z) * h_m
    return next_h
示例#9
0
def rnn_step(x, prev_h, Wx, Wh, b):
    """
    Run the forward pass for a single timestep of a vanilla RNN that uses a tanh
    activation function.

    The input data has dimension D, the hidden state has dimension H, and we use
    a minibatch size of N.

    Inputs:
    - x: Input data for this timestep, of shape (N, D).
    - prev_h: Hidden state from previous timestep, of shape (N, H)
    - Wx: Weight matrix for input-to-hidden connections, of shape (D, H)
    - Wh: Weight matrix for hidden-to-hidden connections, of shape (H, H)
    - b: Biases of shape (H,)

    Returns a tuple of:
    - next_h: Next hidden state, of shape (N, H)
    """
    next_h = np.tanh(x.dot(Wx) + prev_h.dot(Wh) + b)
    return next_h
示例#10
0
文件: deparser.py 项目: wddabc/minpy
    def parse(self, tokens, oracle_actions=None):
        def _valid_actions(stack, buffer):
            valid_actions = []
            if len(buffer) > 0:
                valid_actions += [SHIFT]
            if len(stack) >= 2:
                valid_actions += [REDUCE_L, REDUCE_R]
            return valid_actions

        if oracle_actions: oracle_actions = list(oracle_actions)
        buffer = StackRNN(self.buffRNN, self.params['empty_buffer_emb'])
        stack = StackRNN(self.stackRNN)

        # Put the parameters in the cg
        W_comp = self.params['pW_comp']  # syntactic composition
        b_comp = self.params['pb_comp']
        W_s2h = self.params['pW_s2h']  # state to hidden
        b_s2h = self.params['pb_s2h']
        W_act = self.params['pW_act']  # hidden to action
        b_act = self.params['pb_act']
        emb = self.params['wemb']

        # We will keep track of all the losses we accumulate during parsing.
        # If some decision is unambiguous because it's the only thing valid given
        # the parser state, we will not model it. We only model what is ambiguous.
        loss = 0.

        # push the tokens onto the buffer (tokens is in reverse order)
        for tok in tokens:
            # TODO: I remember numpy ndarray supports python built-in list indexing
            tok_embedding = emb[np.array([tok])]
            buffer.push(tok_embedding, (tok_embedding, self.vocab.i2w[tok]))
        while not (len(stack) == 1 and len(buffer) == 0):
            # compute probability of each of the actions and choose an action
            # either from the oracle or if there is no oracle, based on the model
            valid_actions = _valid_actions(stack, buffer)
            log_probs = None
            action = valid_actions[0]
            if len(valid_actions) > 1:
                p_t = np.transpose(
                    np.concatenate([buffer.top(), stack.top()], axis=1))
                h = np.tanh(np.dot(W_s2h, p_t) + b_s2h)
                logits = np.dot(W_act, h) + b_act
                log_probs = logsoftmax(logits, valid_actions)
                if oracle_actions is None:
                    # Temporary work around by manually back-off to numpy https://github.com/dmlc/minpy/issues/15
                    action = numpy.argmax(map(lambda x: x[0], list(log_probs)))
            if oracle_actions is not None:
                action = oracle_actions.pop()
            if log_probs is not None:
                # append the action-specific loss
                # print action, log_probs[action], map(lambda x: x[0], list(log_probs))
                loss += log_probs[action]

            # execute the action to update the parser state
            if action == SHIFT:
                tok_embedding, token = buffer.pop()
                stack.push(tok_embedding, (tok_embedding, token))
            else:  # one of the REDUCE actions
                right = stack.pop()  # pop a stack state
                left = stack.pop()  # pop another stack state
                # figure out which is the head and which is the modifier
                head, modifier = (left,
                                  right) if action == REDUCE_R else (right,
                                                                     left)

                # compute composed representation
                head_rep, head_tok = head
                mod_rep, mod_tok = modifier
                composed_rep = np.tanh(
                    np.dot(
                        W_comp,
                        np.transpose(
                            np.concatenate([head_rep, mod_rep], axis=1))) +
                    b_comp)
                composed_rep = np.transpose(composed_rep)
                stack.push(composed_rep, (composed_rep, head_tok))
                if oracle_actions is None:
                    print('{0} --> {1}'.format(head_tok, mod_tok))

        # the head of the tree that remains at the top of the stack is the root
        if oracle_actions is None:
            head = stack.pop()[1]
            print('ROOT --> {0}'.format(head))
        return -loss
示例#11
0
 def minpy_rnn_step_forward(x, prev_h, Wx, Wh, b):
     next_h = mp.tanh(x.dot(Wx) + prev_h.dot(Wh) + b)
     return next_h
示例#12
0
def test_ufunc():
    x = np.array([-1.2, 1.2])
    np.absolute(x)
    np.absolute(1.2 + 1j)
    x = np.linspace(start=-10, stop=10, num=101)
    np.add(1.0, 4.0)
    x1 = np.arange(9.0).reshape((3, 3))
    x2 = np.arange(3.0)
    np.add(x1, x2)
    np.arccos([1, -1])
    x = np.linspace(-1, 1, num=100)
    np.arccosh([np.e, 10.0])
    np.arccosh(1)
    np.arcsin(0)
    np.arcsinh(np.array([np.e, 10.0]))
    np.arctan([0, 1])
    np.pi/4
    x = np.linspace(-10, 10)
    x = np.array([-1, +1, +1, -1])
    y = np.array([-1, -1, +1, +1])
    np.arctan2(y, x) * 180 / np.pi
    np.arctan2([1., -1.], [0., 0.])
    np.arctan2([0., 0., np.inf], [+0., -0., np.inf])
    np.arctanh([0, -0.5])
    np.bitwise_and(13, 17)
    np.bitwise_and(14, 13)
    # np.binary_repr(12)    return str
    np.bitwise_and([14,3], 13)
    np.bitwise_and([11,7], [4,25])
    np.bitwise_and(np.array([2,5,255]), np.array([3,14,16]))
    np.bitwise_and([True, True], [False, True])
    np.bitwise_or(13, 16)
    # np.binary_repr(29)
    np.bitwise_or(32, 2)
    np.bitwise_or([33, 4], 1)
    np.bitwise_or([33, 4], [1, 2])
    np.bitwise_or(np.array([2, 5, 255]), np.array([4, 4, 4]))
    # np.array([2, 5, 255]) | np.array([4, 4, 4])
    np.bitwise_or(np.array([2, 5, 255, 2147483647], dtype=np.int32),
                  np.array([4, 4, 4, 2147483647], dtype=np.int32))
    np.bitwise_or([True, True], [False, True])
    np.bitwise_xor(13, 17)
    # np.binary_repr(28)
    np.bitwise_xor(31, 5)
    np.bitwise_xor([31,3], 5)
    np.bitwise_xor([31,3], [5,6])
    np.bitwise_xor([True, True], [False, True])
    a = np.array([-1.7, -1.5, -0.2, 0.2, 1.5, 1.7, 2.0])
    np.ceil(a)
    a = np.array([-1.7, -1.5, -0.2, 0.2, 1.5, 1.7, 2.0])
    np.trunc(a)
    np.cos(np.array([0, np.pi/2, np.pi]))
    np.cosh(0)
    x = np.linspace(-4, 4, 1000)
    rad = np.arange(12.)*np.pi/6
    np.degrees(rad)
    out = np.zeros((rad.shape))
    r = np.degrees(rad, out)
    # np.all(r == out) return bool
    np.rad2deg(np.pi/2)
    np.divide(2.0, 4.0)
    x1 = np.arange(9.0).reshape((3, 3))
    x2 = np.arange(3.0)
    np.divide(2, 4)
    np.divide(2, 4.)
    np.equal([0, 1, 3], np.arange(3))
    np.equal(1, np.ones(1))
    x = np.linspace(-2*np.pi, 2*np.pi, 100)
    np.exp2([2, 3])
    np.expm1(1e-10)
    np.exp(1e-10) - 1
    np.fabs(-1)
    np.fabs([-1.2, 1.2])
    a = np.array([-1.7, -1.5, -0.2, 0.2, 1.5, 1.7, 2.0])
    np.floor(a)
    np.floor_divide(7,3)
    np.floor_divide([1., 2., 3., 4.], 2.5)
    np.fmod([-3, -2, -1, 1, 2, 3], 2)
    np.remainder([-3, -2, -1, 1, 2, 3], 2)
    np.fmod([5, 3], [2, 2.])
    a = np.arange(-3, 3).reshape(3, 2)
    np.fmod(a, [2,2])
    np.greater([4,2],[2,2])
    a = np.array([4,2])
    b = np.array([2,2])
    a > b
    np.greater_equal([4, 2, 1], [2, 2, 2])
    np.hypot(3*np.ones((3, 3)), 4*np.ones((3, 3)))
    np.hypot(3*np.ones((3, 3)), [4])
    np.bitwise_not is np.invert
    np.invert(np.array([13], dtype=np.uint8))
    # np.binary_repr(242, width=8)
    np.invert(np.array([13], dtype=np.uint16))
    np.invert(np.array([13], dtype=np.int8))
    # np.binary_repr(-14, width=8)
    np.invert(np.array([True, False]))
    # np.isfinite(1)
    # np.isfinite(0)
    # np.isfinite(np.nan)
    # np.isfinite(np.inf)
    # np.isfinite(np.NINF)
    x = np.array([-np.inf, 0., np.inf])
    y = np.array([2, 2, 2])
    np.isfinite(x, y)
    # np.isinf(np.inf)
    # np.isinf(np.nan)
    # np.isinf(np.NINF)
    # np.isinf([np.inf, -np.inf, 1.0, np.nan])
    x = np.array([-np.inf, 0., np.inf])
    y = np.array([2, 2, 2])
    # np.isinf(x, y)
    # np.isnan(np.nan)
    # np.isnan(np.inf)
    # np.binary_repr(5)
    np.left_shift(5, 2)
    # np.binary_repr(20)
    np.left_shift(5, [1,2,3])
    np.less([1, 2], [2, 2])
    np.less_equal([4, 2, 1], [2, 2, 2])
    x = np.array([0, 1, 2, 2**4])
    xi = np.array([0+1.j, 1, 2+0.j, 4.j])
    np.log2(xi)
    prob1 = np.log(1e-50)
    prob2 = np.log(2.5e-50)
    prob12 = np.logaddexp(prob1, prob2)
    prob12
    np.exp(prob12)
    prob1 = np.log2(1e-50)
    prob2 = np.log2(2.5e-50)
    prob12 = np.logaddexp2(prob1, prob2)
    prob1, prob2, prob12
    2**prob12
    np.log1p(1e-99)
    np.log(1 + 1e-99)
    # np.logical_and(True, False)
    # np.logical_and([True, False], [False, False])
    x = np.arange(5)
    # np.logical_and(x>1, x<4)
    # np.logical_not(3)
    # np.logical_not([True, False, 0, 1])
    x = np.arange(5)
    # np.logical_not(x<3)
    # np.logical_or(True, False)
    # np.logical_or([True, False], [False, False])
    x = np.arange(5)
    # np.logical_or(x < 1, x > 3)
    # np.logical_xor(True, False)
    # np.logical_xor([True, True, False, False], [True, False, True, False])
    x = np.arange(5)
    # np.logical_xor(x < 1, x > 3)
    # np.logical_xor(0, np.eye(2))
    np.maximum([2, 3, 4], [1, 5, 2])
    # np.maximum([np.nan, 0, np.nan], [0, np.nan, np.nan])
    # np.maximum(np.Inf, 1)
    np.minimum([2, 3, 4], [1, 5, 2])
    # np.minimum([np.nan, 0, np.nan],[0, np.nan, np.nan])
    # np.minimum(-np.Inf, 1)
    np.fmax([2, 3, 4], [1, 5, 2])
    np.fmax(np.eye(2), [0.5, 2])
    # np.fmax([np.nan, 0, np.nan],[0, np.nan, np.nan])
    np.fmin([2, 3, 4], [1, 5, 2])
    np.fmin(np.eye(2), [0.5, 2])
    # np.fmin([np.nan, 0, np.nan],[0, np.nan, np.nan])
    np.modf([0, 3.5])
    np.modf(-0.5)
    np.multiply(2.0, 4.0)
    x1 = np.arange(9.0).reshape((3, 3))
    x2 = np.arange(3.0)
    np.multiply(x1, x2)
    np.negative([1.,-1.])
    np.not_equal([1.,2.], [1., 3.])
    np.not_equal([1, 2], [[1, 3],[1, 4]])
    x1 = range(6)
    np.power(x1, 3)
    x2 = [1.0, 2.0, 3.0, 3.0, 2.0, 1.0]
    np.power(x1, x2)
    x2 = np.array([[1, 2, 3, 3, 2, 1], [1, 2, 3, 3, 2, 1]])
    np.power(x1, x2)
    deg = np.arange(12.) * 30.
    np.radians(deg)
    out = np.zeros((deg.shape))
    ret = np.radians(deg, out)
    ret is out
    np.deg2rad(180)
    np.reciprocal(2.)
    np.reciprocal([1, 2., 3.33])
    np.remainder([4, 7], [2, 3])
    np.remainder(np.arange(7), 5)
    # np.binary_repr(10)
    np.right_shift(10, 1)
    # np.binary_repr(5)
    np.right_shift(10, [1,2,3])
    a = np.array([-1.7, -1.5, -0.2, 0.2, 1.5, 1.7, 2.0])
    np.rint(a)
    np.sign([-5., 4.5])
    np.sign(0)
    # np.sign(5-2j)
    # np.signbit(-1.2)
    np.signbit(np.array([1, -2.3, 2.1]))
    np.copysign(1.3, -1)
    np.copysign([-1, 0, 1], -1.1)
    np.copysign([-1, 0, 1], np.arange(3)-1)
    np.sin(np.pi/2.)
    np.sin(np.array((0., 30., 45., 60., 90.)) * np.pi / 180. )
    x = np.linspace(-np.pi, np.pi, 201)
    np.sinh(0)
    # np.sinh(np.pi*1j/2)
    np.sqrt([1,4,9])
    np.sqrt([4, -1, -3+4J])
    np.cbrt([1,8,27])
    np.square([-1j, 1])
    np.subtract(1.0, 4.0)
    x1 = np.arange(9.0).reshape((3, 3))
    x2 = np.arange(3.0)
    np.subtract(x1, x2)
    np.tan(np.array([-pi,pi/2,pi]))
    np.tanh((0, np.pi*1j, np.pi*1j/2))
    x = np.arange(5)
    np.true_divide(x, 4)
    x = np.arange(9)
    y1, y2 = np.frexp(x)
    y1 * 2**y2
    np.ldexp(5, np.arange(4))
    x = np.arange(6)
    np.ldexp(*np.frexp(x))
示例#13
0
 def tanh(x):
     return np.tanh(x)
示例#14
0
文件: lstm.py 项目: pombredanne/minpy
def sigmoid(x):
    return 0.5*(np.tanh(x) + 1.0)   # Output ranges from 0 to 1.
示例#15
0
 def forward(self, inputs, *args):
     return np.tanh(inputs)
示例#16
0
def test_ufunc():
    x = np.array([-1.2, 1.2])
    np.absolute(x)
    np.absolute(1.2 + 1j)
    x = np.linspace(start=-10, stop=10, num=101)
    np.add(1.0, 4.0)
    x1 = np.arange(9.0).reshape((3, 3))
    x2 = np.arange(3.0)
    np.add(x1, x2)
    np.arccos([1, -1])
    x = np.linspace(-1, 1, num=100)
    np.arccosh([np.e, 10.0])
    np.arccosh(1)
    np.arcsin(0)
    np.arcsinh(np.array([np.e, 10.0]))
    np.arctan([0, 1])
    np.pi / 4
    x = np.linspace(-10, 10)
    x = np.array([-1, +1, +1, -1])
    y = np.array([-1, -1, +1, +1])
    np.arctan2(y, x) * 180 / np.pi
    np.arctan2([1., -1.], [0., 0.])
    np.arctan2([0., 0., np.inf], [+0., -0., np.inf])
    np.arctanh([0, -0.5])
    np.bitwise_and(13, 17)
    np.bitwise_and(14, 13)
    # np.binary_repr(12)    return str
    np.bitwise_and([14, 3], 13)
    np.bitwise_and([11, 7], [4, 25])
    np.bitwise_and(np.array([2, 5, 255]), np.array([3, 14, 16]))
    np.bitwise_and([True, True], [False, True])
    np.bitwise_or(13, 16)
    # np.binary_repr(29)
    np.bitwise_or(32, 2)
    np.bitwise_or([33, 4], 1)
    np.bitwise_or([33, 4], [1, 2])
    np.bitwise_or(np.array([2, 5, 255]), np.array([4, 4, 4]))
    # np.array([2, 5, 255]) | np.array([4, 4, 4])
    np.bitwise_or(np.array([2, 5, 255, 2147483647], dtype=np.int32),
                  np.array([4, 4, 4, 2147483647], dtype=np.int32))
    np.bitwise_or([True, True], [False, True])
    np.bitwise_xor(13, 17)
    # np.binary_repr(28)
    np.bitwise_xor(31, 5)
    np.bitwise_xor([31, 3], 5)
    np.bitwise_xor([31, 3], [5, 6])
    np.bitwise_xor([True, True], [False, True])
    a = np.array([-1.7, -1.5, -0.2, 0.2, 1.5, 1.7, 2.0])
    np.ceil(a)
    a = np.array([-1.7, -1.5, -0.2, 0.2, 1.5, 1.7, 2.0])
    np.trunc(a)
    np.cos(np.array([0, np.pi / 2, np.pi]))
    np.cosh(0)
    x = np.linspace(-4, 4, 1000)
    rad = np.arange(12.) * np.pi / 6
    np.degrees(rad)
    out = np.zeros((rad.shape))
    r = np.degrees(rad, out)
    # np.all(r == out) return bool
    np.rad2deg(np.pi / 2)
    np.divide(2.0, 4.0)
    x1 = np.arange(9.0).reshape((3, 3))
    x2 = np.arange(3.0)
    np.divide(2, 4)
    np.divide(2, 4.)
    np.equal([0, 1, 3], np.arange(3))
    np.equal(1, np.ones(1))
    x = np.linspace(-2 * np.pi, 2 * np.pi, 100)
    np.exp2([2, 3])
    np.expm1(1e-10)
    np.exp(1e-10) - 1
    np.fabs(-1)
    np.fabs([-1.2, 1.2])
    a = np.array([-1.7, -1.5, -0.2, 0.2, 1.5, 1.7, 2.0])
    np.floor(a)
    np.floor_divide(7, 3)
    np.floor_divide([1., 2., 3., 4.], 2.5)
    np.fmod([-3, -2, -1, 1, 2, 3], 2)
    np.remainder([-3, -2, -1, 1, 2, 3], 2)
    np.fmod([5, 3], [2, 2.])
    a = np.arange(-3, 3).reshape(3, 2)
    np.fmod(a, [2, 2])
    np.greater([4, 2], [2, 2])
    a = np.array([4, 2])
    b = np.array([2, 2])
    a > b
    np.greater_equal([4, 2, 1], [2, 2, 2])
    np.hypot(3 * np.ones((3, 3)), 4 * np.ones((3, 3)))
    np.hypot(3 * np.ones((3, 3)), [4])
    np.bitwise_not is np.invert
    np.invert(np.array([13], dtype=np.uint8))
    # np.binary_repr(242, width=8)
    np.invert(np.array([13], dtype=np.uint16))
    np.invert(np.array([13], dtype=np.int8))
    # np.binary_repr(-14, width=8)
    np.invert(np.array([True, False]))
    # np.isfinite(1)
    # np.isfinite(0)
    # np.isfinite(np.nan)
    # np.isfinite(np.inf)
    # np.isfinite(np.NINF)
    x = np.array([-np.inf, 0., np.inf])
    y = np.array([2, 2, 2])
    np.isfinite(x, y)
    # np.isinf(np.inf)
    # np.isinf(np.nan)
    # np.isinf(np.NINF)
    # np.isinf([np.inf, -np.inf, 1.0, np.nan])
    x = np.array([-np.inf, 0., np.inf])
    y = np.array([2, 2, 2])
    # np.isinf(x, y)
    # np.isnan(np.nan)
    # np.isnan(np.inf)
    # np.binary_repr(5)
    np.left_shift(5, 2)
    # np.binary_repr(20)
    np.left_shift(5, [1, 2, 3])
    np.less([1, 2], [2, 2])
    np.less_equal([4, 2, 1], [2, 2, 2])
    x = np.array([0, 1, 2, 2**4])
    xi = np.array([0 + 1.j, 1, 2 + 0.j, 4.j])
    np.log2(xi)
    prob1 = np.log(1e-50)
    prob2 = np.log(2.5e-50)
    prob12 = np.logaddexp(prob1, prob2)
    prob12
    np.exp(prob12)
    prob1 = np.log2(1e-50)
    prob2 = np.log2(2.5e-50)
    prob12 = np.logaddexp2(prob1, prob2)
    prob1, prob2, prob12
    2**prob12
    np.log1p(1e-99)
    np.log(1 + 1e-99)
    # np.logical_and(True, False)
    # np.logical_and([True, False], [False, False])
    x = np.arange(5)
    # np.logical_and(x>1, x<4)
    # np.logical_not(3)
    # np.logical_not([True, False, 0, 1])
    x = np.arange(5)
    # np.logical_not(x<3)
    # np.logical_or(True, False)
    # np.logical_or([True, False], [False, False])
    x = np.arange(5)
    # np.logical_or(x < 1, x > 3)
    # np.logical_xor(True, False)
    # np.logical_xor([True, True, False, False], [True, False, True, False])
    x = np.arange(5)
    # np.logical_xor(x < 1, x > 3)
    # np.logical_xor(0, np.eye(2))
    np.maximum([2, 3, 4], [1, 5, 2])
    # np.maximum([np.nan, 0, np.nan], [0, np.nan, np.nan])
    # np.maximum(np.Inf, 1)
    np.minimum([2, 3, 4], [1, 5, 2])
    # np.minimum([np.nan, 0, np.nan],[0, np.nan, np.nan])
    # np.minimum(-np.Inf, 1)
    np.fmax([2, 3, 4], [1, 5, 2])
    np.fmax(np.eye(2), [0.5, 2])
    # np.fmax([np.nan, 0, np.nan],[0, np.nan, np.nan])
    np.fmin([2, 3, 4], [1, 5, 2])
    np.fmin(np.eye(2), [0.5, 2])
    # np.fmin([np.nan, 0, np.nan],[0, np.nan, np.nan])
    np.modf([0, 3.5])
    np.modf(-0.5)
    np.multiply(2.0, 4.0)
    x1 = np.arange(9.0).reshape((3, 3))
    x2 = np.arange(3.0)
    np.multiply(x1, x2)
    np.negative([1., -1.])
    np.not_equal([1., 2.], [1., 3.])
    np.not_equal([1, 2], [[1, 3], [1, 4]])
    x1 = range(6)
    np.power(x1, 3)
    x2 = [1.0, 2.0, 3.0, 3.0, 2.0, 1.0]
    np.power(x1, x2)
    x2 = np.array([[1, 2, 3, 3, 2, 1], [1, 2, 3, 3, 2, 1]])
    np.power(x1, x2)
    deg = np.arange(12.) * 30.
    np.radians(deg)
    out = np.zeros((deg.shape))
    ret = np.radians(deg, out)
    ret is out
    np.deg2rad(180)
    np.reciprocal(2.)
    np.reciprocal([1, 2., 3.33])
    np.remainder([4, 7], [2, 3])
    np.remainder(np.arange(7), 5)
    # np.binary_repr(10)
    np.right_shift(10, 1)
    # np.binary_repr(5)
    np.right_shift(10, [1, 2, 3])
    a = np.array([-1.7, -1.5, -0.2, 0.2, 1.5, 1.7, 2.0])
    np.rint(a)
    np.sign([-5., 4.5])
    np.sign(0)
    # np.sign(5-2j)
    # np.signbit(-1.2)
    np.signbit(np.array([1, -2.3, 2.1]))
    np.copysign(1.3, -1)
    np.copysign([-1, 0, 1], -1.1)
    np.copysign([-1, 0, 1], np.arange(3) - 1)
    np.sin(np.pi / 2.)
    np.sin(np.array((0., 30., 45., 60., 90.)) * np.pi / 180.)
    x = np.linspace(-np.pi, np.pi, 201)
    np.sinh(0)
    # np.sinh(np.pi*1j/2)
    np.sqrt([1, 4, 9])
    np.sqrt([4, -1, -3 + 4J])
    np.cbrt([1, 8, 27])
    np.square([-1j, 1])
    np.subtract(1.0, 4.0)
    x1 = np.arange(9.0).reshape((3, 3))
    x2 = np.arange(3.0)
    np.subtract(x1, x2)
    np.tan(np.array([-pi, pi / 2, pi]))
    np.tanh((0, np.pi * 1j, np.pi * 1j / 2))
    x = np.arange(5)
    np.true_divide(x, 4)
    x = np.arange(9)
    y1, y2 = np.frexp(x)
    y1 * 2**y2
    np.ldexp(5, np.arange(4))
    x = np.arange(6)
    np.ldexp(*np.frexp(x))
示例#17
0
 def forward(self, inputs, *args):
     return np.tanh(inputs)
示例#18
0
def sigmoid(x):
    return 0.5 * (np.tanh(x / 2.0) + 1.0)  # Output ranges from 0 to 1.
def sigmoid(x):
    return np.multiply(0.5, np.add(np.tanh(x), 1))
示例#20
0
def sigmoid(x):
    return 0.5 * (np.tanh(x / 2) + 1)
示例#21
0
 def minpy_rnn_step_forward(x, prev_h, Wx, Wh, b):
     next_h = mp.tanh(x.dot(Wx) + prev_h.dot(Wh) + b)
     return next_h
示例#22
0
 def sigmoid(x):
     return 0.5 * (np.tanh(x / 2) + 1)
示例#23
0
 def nonlinearity(self, x):
     return np.tanh(x)