def get_common_region_int_ambiguity(ifgram_file, cc_mask_file, water_mask_file=None, num_sample=100, dsNameIn='unwrapPhase'): """Solve the phase unwrapping integer ambiguity for the common regions among all interferograms Parameters: ifgram_file : str, path of interferogram stack file cc_mask_file : str, path of common connected components file water_mask_file : str, path of water mask file num_sample : int, number of pixel sampled for each region dsNameIn : str, dataset name of the unwrap phase to be corrected Returns: common_regions : list of skimage.measure._regionprops._RegionProperties object modified by adding two more variables: sample_coords : 2D np.ndarray in size of (num_sample, 2) in int64 format int_ambiguity : 1D np.ndarray in size of (num_ifgram,) in int format """ print('-' * 50) print( 'calculating the integer ambiguity for the common regions defined in', cc_mask_file) # stack info stack_obj = ifgramStack(ifgram_file) stack_obj.open() date12_list = stack_obj.get_date12_list(dropIfgram=True) num_ifgram = len(date12_list) C = matrix( ifgramStack.get_design_matrix4triplet(date12_list).astype(float)) ref_phase = stack_obj.get_reference_phase(unwDatasetName=dsNameIn, dropIfgram=True).reshape( num_ifgram, -1) # prepare common label print('read common mask from', cc_mask_file) cc_mask = readfile.read(cc_mask_file)[0] if water_mask_file is not None and os.path.isfile(water_mask_file): water_mask = readfile.read(water_mask_file)[0] print('refine common mask based on water mask file', water_mask_file) cc_mask[water_mask == 0] = 0 label_img, num_label = connectComponent.get_large_label(cc_mask, min_area=2.5e3, print_msg=True) common_regions = measure.regionprops(label_img) print('number of common regions:', num_label) # add sample_coords / int_ambiguity print('number of samples per region:', num_sample) print('solving the phase-unwrapping integer ambiguity for {}'.format( dsNameIn)) print( '\tbased on the closure phase of interferograms triplets (Yunjun et al., 2019)' ) print( '\tusing the L1-norm regularzed least squares approximation (LASSO) ...' ) for i in range(num_label): common_reg = common_regions[i] # sample_coords idx = sorted( np.random.choice(common_reg.area, num_sample, replace=False)) common_reg.sample_coords = common_reg.coords[idx, :].astype(int) # solve for int_ambiguity U = np.zeros((num_ifgram, num_sample)) if common_reg.label == label_img[stack_obj.refY, stack_obj.refX]: print('{}/{} skip calculation for the reference region'.format( i + 1, num_label)) else: prog_bar = ptime.progressBar(maxValue=num_sample, prefix='{}/{}'.format( i + 1, num_label)) for j in range(num_sample): # read unwrap phase y, x = common_reg.sample_coords[j, :] unw = ifginv.read_unwrap_phase(stack_obj, box=(x, y, x + 1, y + 1), ref_phase=ref_phase, unwDatasetName=dsNameIn, dropIfgram=True, print_msg=False).reshape( num_ifgram, -1) # calculate closure_int closure_pha = np.dot(C, unw) closure_int = matrix( np.round( (closure_pha - ut.wrap(closure_pha)) / (2. * np.pi))) # solve for U U[:, j] = np.round( l1regls(-C, closure_int, alpha=1e-2, show_progress=0)).flatten() prog_bar.update(j + 1, every=5) prog_bar.close() # add int_ambiguity common_reg.int_ambiguity = np.median(U, axis=1) common_reg.date12_list = date12_list #sort regions by size to facilitate the region matching later common_regions.sort(key=lambda x: x.area, reverse=True) # plot sample result fig_size = pp.auto_figure_size(label_img.shape, disp_cbar=False) fig, ax = plt.subplots(figsize=fig_size) ax.imshow(label_img, cmap='jet') for common_reg in common_regions: ax.plot(common_reg.sample_coords[:, 1], common_reg.sample_coords[:, 0], 'k.', ms=2) pp.auto_flip_direction(stack_obj.metadata, ax, print_msg=False) out_img = 'common_region_sample.png' fig.savefig(out_img, bbox_inches='tight', transparent=True, dpi=300) print('saved common regions and sample pixels to file', out_img) return common_regions
def get_common_region_int_ambiguity(ifgram_file, cc_mask_file, water_mask_file=None, num_sample=100, dsNameIn='unwrapPhase'): """Solve the phase unwrapping integer ambiguity for the common regions among all interferograms Parameters: ifgram_file : str, path of interferogram stack file cc_mask_file : str, path of common connected components file water_mask_file : str, path of water mask file num_sample : int, number of pixel sampled for each region dsNameIn : str, dataset name of the unwrap phase to be corrected Returns: common_regions : list of skimage.measure._regionprops._RegionProperties object modified by adding two more variables: sample_coords : 2D np.ndarray in size of (num_sample, 2) in int64 format int_ambiguity : 1D np.ndarray in size of (num_ifgram,) in int format """ print('-'*50) print('calculating the integer ambiguity for the common regions defined in', cc_mask_file) # stack info stack_obj = ifgramStack(ifgram_file) stack_obj.open() date12_list = stack_obj.get_date12_list(dropIfgram=True) num_ifgram = len(date12_list) C = matrix(ifgramStack.get_design_matrix4triplet(date12_list).astype(float)) ref_phase = stack_obj.get_reference_phase(unwDatasetName=dsNameIn, dropIfgram=True).reshape(num_ifgram, -1) # prepare common label print('read common mask from', cc_mask_file) cc_mask = readfile.read(cc_mask_file)[0] if water_mask_file is not None and os.path.isfile(water_mask_file): water_mask = readfile.read(water_mask_file)[0] print('refine common mask based on water mask file', water_mask_file) cc_mask[water_mask == 0] = 0 label_img, num_label = connectComponent.get_large_label(cc_mask, min_area=2.5e3, print_msg=True) common_regions = measure.regionprops(label_img) print('number of common regions:', num_label) # add sample_coords / int_ambiguity print('number of samples per region:', num_sample) print('solving the phase-unwrapping integer ambiguity for {}'.format(dsNameIn)) print('\tbased on the closure phase of interferograms triplets (Yunjun et al., 2019)') print('\tusing the L1-norm regularzed least squares approximation (LASSO) ...') for i in range(num_label): common_reg = common_regions[i] # sample_coords idx = sorted(np.random.choice(common_reg.area, num_sample, replace=False)) common_reg.sample_coords = common_reg.coords[idx, :].astype(int) # solve for int_ambiguity U = np.zeros((num_ifgram, num_sample)) if common_reg.label == label_img[stack_obj.refY, stack_obj.refX]: print('{}/{} skip calculation for the reference region'.format(i+1, num_label)) else: prog_bar = ptime.progressBar(maxValue=num_sample, prefix='{}/{}'.format(i+1, num_label)) for j in range(num_sample): # read unwrap phase y, x = common_reg.sample_coords[j, :] unw = ifginv.read_unwrap_phase(stack_obj, box=(x, y, x+1, y+1), ref_phase=ref_phase, unwDatasetName=dsNameIn, dropIfgram=True, print_msg=False).reshape(num_ifgram, -1) # calculate closure_int closure_pha = np.dot(C, unw) closure_int = matrix(np.round((closure_pha - ut.wrap(closure_pha)) / (2.*np.pi))) # solve for U U[:,j] = np.round(l1regls(-C, closure_int, alpha=1e-2, show_progress=0)).flatten() prog_bar.update(j+1, every=5) prog_bar.close() # add int_ambiguity common_reg.int_ambiguity = np.median(U, axis=1) common_reg.date12_list = date12_list #sort regions by size to facilitate the region matching later common_regions.sort(key=lambda x: x.area, reverse=True) # plot sample result fig_size = pp.auto_figure_size(label_img.shape, disp_cbar=False) fig, ax = plt.subplots(figsize=fig_size) ax.imshow(label_img, cmap='jet') for common_reg in common_regions: ax.plot(common_reg.sample_coords[:,1], common_reg.sample_coords[:,0], 'k.', ms=2) pp.auto_flip_direction(stack_obj.metadata, ax, print_msg=False) out_img = 'common_region_sample.png' fig.savefig(out_img, bbox_inches='tight', transparent=True, dpi=300) print('saved common regions and sample pixels to file', out_img) return common_regions