示例#1
0
def test_aggregate(mock_save_results, mock_get_results, mock_fetch_data):
    # run partial jobs
    inputs_1 = t.inputs_regression(limit_from=0,
                                   limit_to=8,
                                   include_nominal=True)
    mock_fetch_data.return_value = inputs_1
    intermediate()
    output_1 = mock_save_results.call_args[0][0]

    inputs_2 = t.inputs_regression(limit_from=8,
                                   limit_to=20,
                                   include_nominal=True)
    mock_fetch_data.return_value = inputs_2
    intermediate()
    output_2 = mock_save_results.call_args[0][0]

    mock_get_results.side_effect = [
        mock.MagicMock(data=output_1, error=''),
        mock.MagicMock(data=output_2, error=''),
    ]

    # run computations
    aggregate(['1', '2'])
    output_agg = json.loads(mock_save_results.call_args[0][0])
    beta_agg = {k: v['coef'] for k, v in output_agg.items()}

    # calculate coefficients from single-node regression
    mock_fetch_data.return_value = t.inputs_regression(limit_to=20,
                                                       include_nominal=True)
    main()
    output_single = json.loads(mock_save_results.call_args[0][0])
    beta_single = {k: v['coef'] for k, v in output_single.items()}

    assert t.round_dict(beta_agg) == t.round_dict(beta_single)
示例#2
0
def test_main_signular_matrix(mock_exit, mock_save_error, mock_fetch_data):
    mock_fetch_data.return_value = t.inputs_regression(limit_to=1,
                                                       include_nominal=False)
    main()
    mock_save_error.assert_called_with(
        'Too many factors (4) for too little data (1). Use less covariables or different design.'
    )
示例#3
0
def test_main(mock_save_results, mock_fetch_data):
    mock_fetch_data.return_value = t.inputs_regression(include_nominal=False)
    main()
    result = json.loads(mock_save_results.call_args[0][0])
    assert t.round_dict(result) == {
        'Residual': {
            'F': 'NaN',
            'PR(>F)': 'NaN',
            'df': 1.0,
            'mean_sq': 0.019,
            'sum_sq': 0.019
        },
        'minimentalstate': {
            'F': 12.831,
            'PR(>F)': 0.173,
            'df': 1.0,
            'mean_sq': 0.248,
            'sum_sq': 0.248
        },
        'subjectage': {
            'F': 0.958,
            'PR(>F)': 0.507,
            'df': 1.0,
            'mean_sq': 0.019,
            'sum_sq': 0.019
        },
        'subjectage:minimentalstate': {
            'F': 0.096,
            'PR(>F)': 0.808,
            'df': 1.0,
            'mean_sq': 0.002,
            'sum_sq': 0.002
        }
    }
示例#4
0
def test_compute_heatmap_continuous(mock_save_results, mock_fetch_data):
    mock_fetch_data.return_value = t.inputs_regression(include_nominal=True)

    compute('correlation_heatmap')
    results = json.loads(mock_save_results.call_args[0][0])
    assert t.round_dict(results) == {
        'data': [{
            'type':
            'heatmap',
            'x': ['lefthippocampus', 'subjectage', 'minimentalstate'],
            'xaxis':
            'x1',
            'y': ['minimentalstate', 'subjectage', 'lefthippocampus'],
            'yaxis':
            'y1',
            'z': [[0.959, -0.343, 1.0], [-0.254, 1.0, -0.343],
                  [1.0, -0.254, 0.959]],
            'zmax':
            1,
            'zmin':
            -1
        }],
        'layout': {
            'title': 'Correlation heatmap'
        }
    }
示例#5
0
def test_main_empty(mock_save_results, mock_fetch_data):
    mock_fetch_data.return_value = t.inputs_regression(include_nominal=True,
                                                       limit_to=0)
    main()
    output = json.loads(mock_save_results.call_args[0][0])

    assert output == {}
def test_compute_histograms():
    inputs = t.inputs_regression(include_integer=True, include_nominal=True)
    dep_var = inputs['data']['independent'][-2]
    assert dep_var['name'] == 'minimentalstate'
    histograms_results = compute_histograms(dep_var,
                                            inputs['data']['independent'], 3)
    assert histograms_results == [{
        'chart': {
            'type': 'column'
        },
        'label':
        'Histogram',
        'series': [{
            'data': [0, 2, 3],
            'name': 'all'
        }],
        'title': {
            'text': 'MMSE Total scores histogram'
        },
        'xAxis': {
            'categories': ['0 - 10', '10 - 20', '20 - 30']
        },
        'yAxis': {
            'allowDecimals': False,
            'min': 0,
            'title': {
                'text': 'Number of participants'
            }
        }
    }, {
        'chart': {
            'type': 'column'
        },
        'label':
        'Histogram - Age Group',
        'series': [{
            'data': [0, 1, 2],
            'name': '-50y'
        }, {
            'data': [0, 1, 1],
            'name': '50-59y'
        }],
        'title': {
            'text': 'MMSE Total scores histogram by Age Group'
        },
        'xAxis': {
            'categories': ['0 - 10', '10 - 20', '20 - 30']
        },
        'yAxis': {
            'allowDecimals': False,
            'min': 0,
            'title': {
                'text': 'Number of participants'
            }
        }
    }]
示例#7
0
def test_aggregate_single(mock_save_results, mock_get_results,
                          mock_fetch_data):
    """Aggregation on single node should give same results as ordinary linear regression."""
    # run partial jobs
    inputs = t.inputs_regression(limit_from=0, limit_to=20)
    mock_fetch_data.return_value = inputs
    intermediate()
    output = mock_save_results.call_args[0][0]

    mock_get_results.side_effect = [
        mock.MagicMock(data=output, error=''),
    ]

    # run computations
    aggregate(['1'])
    output_agg = json.loads(mock_save_results.call_args[0][0])

    # calculate coefficients from single-node regression
    mock_fetch_data.return_value = t.inputs_regression(limit_to=20)
    main()
    output_single = json.loads(mock_save_results.call_args[0][0])

    assert t.round_dict(output_agg) == t.round_dict(output_single)
def test_intermediate_stats_real(mock_save_results, mock_fetch_data):
    # input data with some null values
    data = t.inputs_regression(include_nominal=True, add_null=True)

    mock_fetch_data.return_value = data

    intermediate_stats()
    results = json.loads(mock_save_results.call_args[0][0])
    assert len(results['data']) == 12
    res = sorted(results['data'],
                 key=lambda d: (d['index'], tuple(d['group'])))
    assert t.round_dict(res[:2]) == [{
        'index': 'agegroup',
        'label': 'Age Group',
        'type': 'polynominal',
        'group': ['-50y'],
        'group_variables': ['Age Group'],
        'count': 3,
        'unique': 1,
        'top': '-50y',
        'frequency': {
            '-50y': 3,
            '50-59y': 0
        },
        'null_count': 0
    }, {
        'index': 'agegroup',
        'label': 'Age Group',
        'type': 'polynominal',
        'group': ['50-59y'],
        'group_variables': ['Age Group'],
        'count': 2,
        'unique': 1,
        'top': '50-59y',
        'frequency': {
            '50-59y': 2,
            '-50y': 0
        },
        'null_count': 0
    }]
示例#9
0
def test_intermediate_stats(mock_save_results, mock_fetch_data):
    mock_fetch_data.return_value = t.inputs_regression(include_nominal=True)

    intermediate_stats()
    results = json.loads(mock_save_results.call_args[0][0])
    assert t.round_dict(results) == {
        'X^T * X': [[44.891, 1055.621,
                     317.732], [1055.621, 25462.015, 7279.928],
                    [317.732, 7279.928, 2354.0]],
        'columns': ['lefthippocampus', 'subjectage', 'minimentalstate'],
        'count':
        5,
        'crosstab': [{
            'agegroup': '-50y',
            'count': 3
        }, {
            'agegroup': '50-59y',
            'count': 2
        }],
        'means': [2.987, 70.86, 20.8],
        'nominal_columns': ['agegroup']
    }
示例#10
0
def test_main_empty_input(mock_exit, mock_save_error, mock_fetch_data):
    mock_fetch_data.return_value = t.inputs_regression(limit_to=0)
    main()

    mock_exit.assert_called_once_with(1)
    mock_save_error.assert_called_once()
示例#11
0
def test_main(mock_parameters, mock_save_results, mock_get_results,
              mock_fetch_data):
    # create mock objects from database
    mock_fetch_data.return_value = t.inputs_regression(include_nominal=False,
                                                       limit_to=5)
    mock_get_results.return_value = None

    main()

    results = json.loads(mock_save_results.call_args[0][0])

    assert t.round_dict(results) == {
        'profile':
        'tabular-data-resource',
        'name':
        'hinmine-features',
        'data': [{
            'f_1': 0.0,
            'f_2': 0.51,
            'f_3': 0.496,
            'f_4': 0.49,
            'f_5': 0.504,
            'id': 0.0
        }, {
            'f_1': 0.509,
            'f_2': 0.0,
            'f_3': 0.496,
            'f_4': 0.492,
            'f_5': 0.503,
            'id': 1.0
        }, {
            'f_1': 0.506,
            'f_2': 0.506,
            'f_3': 0.0,
            'f_4': 0.484,
            'f_5': 0.504,
            'id': 2.0
        }, {
            'f_1': 0.505,
            'f_2': 0.508,
            'f_3': 0.49,
            'f_4': 0.0,
            'f_5': 0.497,
            'id': 3.0
        }, {
            'f_1': 0.508,
            'f_2': 0.508,
            'f_3': 0.498,
            'f_4': 0.486,
            'f_5': 0.0,
            'id': 4.0
        }],
        'schema': {
            'fields': [{
                'name': 'f_1',
                'type': 'float'
            }, {
                'name': 'f_2',
                'type': 'float'
            }, {
                'name': 'f_3',
                'type': 'float'
            }, {
                'name': 'f_4',
                'type': 'float'
            }, {
                'name': 'f_5',
                'type': 'float'
            }],
            'primaryKey':
            'id'
        }
    }
示例#12
0
def test_main(mock_save_results, mock_fetch_data):
    mock_fetch_data.return_value = t.inputs_regression(include_nominal=True)
    main()
    output = json.loads(mock_save_results.call_args[0][0])

    assert t.round_dict(fx.output_regression()) == t.round_dict(output)