def test_benchmark(): # Generate training and test instances train_instances = MaxWeightStableSetGenerator( n=randint(low=25, high=26)).generate(5) test_instances = MaxWeightStableSetGenerator( n=randint(low=25, high=26)).generate(3) # Training phase... training_solver = LearningSolver() training_solver.parallel_solve(train_instances, n_jobs=10) # Test phase... test_solvers = { "Strategy A": LearningSolver(), "Strategy B": LearningSolver(), } benchmark = BenchmarkRunner(test_solvers) benchmark.fit(train_instances) benchmark.parallel_solve(test_instances, n_jobs=2, n_trials=2) assert benchmark.raw_results().values.shape == (12, 16) benchmark.save_results("/tmp/benchmark.csv") assert os.path.isfile("/tmp/benchmark.csv") benchmark = BenchmarkRunner(test_solvers) benchmark.load_results("/tmp/benchmark.csv") assert benchmark.raw_results().values.shape == (12, 16)
def charts(): import matplotlib.pyplot as plt import seaborn as sns sns.set_style("whitegrid") sns.set_palette("Blues_r") benchmark = BenchmarkRunner({}) benchmark.load_results("%s/benchmark_ml.csv" % basepath) results = benchmark.raw_results() results["Gap (%)"] = results["Gap"] * 100.0 sense = results.loc[0, "Sense"] if sense == "min": primal_column = "Relative Upper Bound" obj_column = "Upper Bound" predicted_obj_column = "Predicted UB" else: primal_column = "Relative Lower Bound" obj_column = "Lower Bound" predicted_obj_column = "Predicted LB" palette = { "baseline": "#9b59b6", "ml-exact": "#3498db", "ml-heuristic": "#95a5a6" } fig, (ax1, ax2, ax3, ax4) = plt.subplots( nrows=1, ncols=4, figsize=(12, 4), gridspec_kw={'width_ratios': [2, 1, 1, 2]}, ) sns.stripplot( x="Solver", y="Wallclock Time", data=results, ax=ax1, jitter=0.25, palette=palette, size=4.0, ) sns.barplot( x="Solver", y="Wallclock Time", data=results, ax=ax1, errwidth=0., alpha=0.4, palette=palette, estimator=median, ) ax1.set(ylabel='Wallclock Time (s)') ax2.set_ylim(-0.5, 5.5) sns.stripplot( x="Solver", y="Gap (%)", jitter=0.25, data=results[results["Solver"] != "ml-heuristic"], ax=ax2, palette=palette, size=4.0, ) ax3.set_ylim(0.95, 1.05) sns.stripplot( x="Solver", y=primal_column, jitter=0.25, data=results[results["Solver"] == "ml-heuristic"], ax=ax3, palette=palette, ) sns.scatterplot( x=obj_column, y=predicted_obj_column, hue="Solver", data=results[results["Solver"] == "ml-exact"], ax=ax4, palette=palette, ) xlim, ylim = ax4.get_xlim(), ax4.get_ylim() ax4.plot([-1e10, 1e10], [-1e10, 1e10], ls='-', color="#cccccc") ax4.set_xlim(xlim) ax4.set_ylim(ylim) ax4.get_legend().remove() fig.tight_layout() plt.savefig("%s/performance.png" % basepath, bbox_inches='tight', dpi=150)