def stationmodel(self, smdata, **kwargs): """ Plot station model data on the map. :param smdata: (*StationModelData*) Station model data. :param surface: (*boolean*) Is surface data or not. Default is True. :param size: (*float*) Size of the station model symbols. Default is 12. :param proj: (*ProjectionInfo*) Map projection of the data. Default is None. :param order: (*int*) Z-order of created layer for display. :returns: (*VectoryLayer*) Station model VectoryLayer. """ proj = kwargs.pop('proj', None) size = kwargs.pop('size', 12) surface = kwargs.pop('surface', True) ls = LegendManage.createSingleSymbolLegendScheme(ShapeTypes.Point, Color.blue, size) layer = DrawMeteoData.createStationModelLayer(smdata, ls, 'stationmodel', surface) if (proj != None): layer.setProjInfo(proj) # Add layer isadd = kwargs.pop('isadd', True) if isadd: zorder = kwargs.pop('zorder', None) select = kwargs.pop('select', True) self.add_layer(layer, zorder, select) self.axes.setDrawExtent(layer.getExtent().clone()) self.axes.setExtent(layer.getExtent().clone()) return MILayer(layer)
def trajplayer(self): ''' Create trajectory point layer. ''' if self.dataset.isTrajData(): return MILayer(self.dataset.getDataInfo().createTrajPointLayer()) else: return None
def trajlayer(self): ''' Create trajectory polyline layer. ''' if self.dataset.isTrajData(): return MILayer(self.dataset.getDataInfo().createTrajLineLayer()) else: return None
def streamplot(self, *args, **kwargs): """ Plot streamline in a map. :param x: (*array_like*) Optional. X coordinate array. :param y: (*array_like*) Optional. Y coordinate array. :param u: (*array_like*) U component of the arrow vectors (wind field) or wind direction. :param v: (*array_like*) V component of the arrow vectors (wind field) or wind speed. :param z: (*array_like*) Optional, 2-D z value array. :param color: (*Color*) Streamline color. Default is blue. :param fill_value: (*float*) Fill_value. Default is ``-9999.0``. :param isuv: (*boolean*) Is U/V or direction/speed data array pairs. Default is True. :param density: (*int*) Streamline density. Default is 4. :param proj: (*ProjectionInfo*) Map projection of the data. Default is None. :param zorder: (*int*) Z-order of created layer for display. :param select: (*boolean*) Set the return layer as selected layer or not. :returns: (*VectoryLayer*) Created streamline VectoryLayer. """ cmap = plotutil.getcolormap(**kwargs) fill_value = kwargs.pop('fill_value', -9999.0) proj = kwargs.pop('proj', None) cobj = kwargs.pop('color', 'b') color = plotutil.getcolor(cobj) isuv = kwargs.pop('isuv', True) density = kwargs.pop('density', 4) n = len(args) if n < 4: u = args[0] v = args[1] y = u.dimvalue(0) x = u.dimvalue(1) args = args[2:] else: x = args[0] y = args[1] u = args[2] v = args[3] args = args[4:] ls = LegendManage.createSingleSymbolLegendScheme(ShapeTypes.Polyline, color, 1) plotutil.setlegendscheme(ls, **kwargs) #layer = __plot_uvgriddata_m(plot, udata, vdata, None, ls, 'streamplot', isuv, proj=proj, density=density) layer = DrawMeteoData.createStreamlineLayer(u.array, v.array, x.array, y.array, density, ls, 'layer', isuv) if not proj is None: layer.setProjInfo(proj) # Add layer isadd = kwargs.pop('isadd', True) if isadd: zorder = kwargs.pop('zorder', None) select = kwargs.pop('select', True) self.add_layer(layer, zorder, select) self.axes.setDrawExtent(layer.getExtent().clone()) self.axes.setExtent(layer.getExtent().clone()) return MILayer(layer)
def contourf(self, *args, **kwargs): """ Plot filled contours on the map. :param x: (*array_like*) Optional. X coordinate array. :param y: (*array_like*) Optional. Y coordinate array. :param z: (*array_like*) 2-D z value array. :param levs: (*array_like*) Optional. A list of floating point numbers indicating the level curves to draw, in increasing order. :param cmap: (*string*) Color map string. :param colors: (*list*) If None (default), the colormap specified by cmap will be used. If a string, like ``r`` or ``red``, all levels will be plotted in this color. If a tuple of matplotlib color args (string, float, rgb, etc), different levels will be plotted in different colors in the order specified. :param proj: (*ProjectionInfo*) Map projection of the data. Default is None. :param isadd: (*boolean*) Add layer or not. Default is ``True``. :param zorder: (*int*) Z-order of created layer for display. :param smooth: (*boolean*) Smooth countour lines or not. :param select: (*boolean*) Set the return layer as selected layer or not. :returns: (*VectoryLayer*) Contour VectoryLayer created from array data. """ n = len(args) if n <= 2: a = args[0] y = a.dimvalue(0) x = a.dimvalue(1) args = args[1:] else: x = args[0] y = args[1] a = args[2] args = args[3:] ls = plotutil.getlegendscheme(args, a.min(), a.max(), **kwargs) ls = ls.convertTo(ShapeTypes.Polygon) plotutil.setlegendscheme(ls, **kwargs) isadd = kwargs.pop('isadd', True) smooth = kwargs.pop('smooth', True) layer = DrawMeteoData.createShadedLayer(a.array, x.array, y.array, ls, 'layer', 'data', smooth) proj = kwargs.pop('proj', None) if not proj is None: layer.setProjInfo(proj) # Add layer isadd = kwargs.pop('isadd', True) if isadd: zorder = kwargs.pop('zorder', None) select = kwargs.pop('select', True) if zorder is None: zorder = 0 self.add_layer(layer, zorder, select) self.axes.setDrawExtent(layer.getExtent().clone()) self.axes.setExtent(layer.getExtent().clone()) return MILayer(layer)
def webmap(self, provider='OpenStreetMap', order=0): ''' Add a new web map layer. :param provider: (*string*) Web map provider. :param order: (*int*) Layer order. :returns: Web map layer ''' layer = WebMapLayer() provider = WebMapProvider.valueOf(provider) layer.setWebMapProvider(provider) self.add_layer(layer, order) return MILayer(layer)
def barbs(self, *args, **kwargs): """ Plot a 2-D field of barbs in a map. :param x: (*array_like*) Optional. X coordinate array. :param y: (*array_like*) Optional. Y coordinate array. :param u: (*array_like*) U component of the arrow vectors (wind field) or wind direction. :param v: (*array_like*) V component of the arrow vectors (wind field) or wind speed. :param z: (*array_like*) Optional, 2-D z value array. :param levs: (*array_like*) Optional. A list of floating point numbers indicating the level barbs to draw, in increasing order. :param cmap: (*string*) Color map string. :param fill_value: (*float*) Fill_value. Default is ``-9999.0``. :param isuv: (*boolean*) Is U/V or direction/speed data array pairs. Default is True. :param size: (*float*) Base size of the arrows. :param proj: (*ProjectionInfo*) Map projection of the data. Default is None. :param zorder: (*int*) Z-order of created layer for display. :param select: (*boolean*) Set the return layer as selected layer or not. :returns: (*VectoryLayer*) Created barbs VectoryLayer. """ cmap = plotutil.getcolormap(**kwargs) fill_value = kwargs.pop('fill_value', -9999.0) proj = kwargs.pop('proj', None) order = kwargs.pop('order', None) isuv = kwargs.pop('isuv', True) n = len(args) iscolor = False cdata = None onlyuv = True if n >= 4 and isinstance(args[3], (DimArray, MIArray)): onlyuv = False if onlyuv: u = minum.asarray(args[0]) v = minum.asarray(args[1]) xx = args[0].dimvalue(1) yy = args[0].dimvalue(0) x, y = minum.meshgrid(xx, yy) args = args[2:] if len(args) > 0: cdata = minum.asarray(args[0]) iscolor = True args = args[1:] else: x = minum.asarray(args[0]) y = minum.asarray(args[1]) u = minum.asarray(args[2]) v = minum.asarray(args[3]) args = args[4:] if len(args) > 0: cdata = minum.asarray(args[0]) iscolor = True args = args[1:] if iscolor: if len(args) > 0: cn = args[0] ls = LegendManage.createLegendScheme(cdata.min(), cdata.max(), cn, cmap) else: levs = kwargs.pop('levs', None) if levs is None: ls = LegendManage.createLegendScheme(cdata.min(), cdata.max(), cmap) else: if isinstance(levs, MIArray): levs = levs.tolist() ls = LegendManage.createLegendScheme(cdata.min(), cdata.max(), levs, cmap) else: if cmap.getColorCount() == 1: c = cmap.getColor(0) else: c = Color.black ls = LegendManage.createSingleSymbolLegendScheme(ShapeTypes.Point, c, 10) ls = plotutil.setlegendscheme_point(ls, **kwargs) if not cdata is None: cdata = cdata.array layer = DrawMeteoData.createBarbLayer(x.array, y.array, u.array, v.array, cdata, ls, 'layer', isuv) if not proj is None: layer.setProjInfo(proj) # Add layer isadd = kwargs.pop('isadd', True) if isadd: zorder = kwargs.pop('zorder', None) select = kwargs.pop('select', True) self.add_layer(layer, zorder, select) self.axes.setDrawExtent(layer.getExtent().clone()) self.axes.setExtent(layer.getExtent().clone()) return MILayer(layer)
def pcolor(self, *args, **kwargs): """ Create a pseudocolor plot of a 2-D array in a MapAxes. :param x: (*array_like*) Optional. X coordinate array. :param y: (*array_like*) Optional. Y coordinate array. :param z: (*array_like*) 2-D z value array. :param levs: (*array_like*) Optional. A list of floating point numbers indicating the level curves to draw, in increasing order. :param cmap: (*string*) Color map string. :param colors: (*list*) If None (default), the colormap specified by cmap will be used. If a string, like ‘r’ or ‘red’, all levels will be plotted in this color. If a tuple of matplotlib color args (string, float, rgb, etc), different levels will be plotted in different colors in the order specified. :param fill_value: (*float*) Fill_value. Default is ``-9999.0``. :param proj: (*ProjectionInfo*) Map projection of the data. Default is None. :param isadd: (*boolean*) Add layer or not. Default is ``True``. :param zorder: (*int*) Z-order of created layer for display. :param select: (*boolean*) Set the return layer as selected layer or not. :returns: (*VectoryLayer*) Polygon VectoryLayer created from array data. """ proj = kwargs.pop('proj', None) n = len(args) if n <= 2: a = args[0] y = a.dimvalue(0) x = a.dimvalue(1) args = args[1:] else: x = args[0] y = args[1] a = args[2] args = args[3:] if a.ndim == 2 and x.ndim == 1: x, y = minum.meshgrid(x, y) ls = plotutil.getlegendscheme(args, a.min(), a.max(), **kwargs) ls = ls.convertTo(ShapeTypes.Polygon) plotutil.setlegendscheme(ls, **kwargs) if proj is None or proj.isLonLat(): lonlim = 90 else: lonlim = 0 x, y = minum.project(x, y, toproj=proj) layer = ArrayUtil.meshLayer(x.asarray(), y.asarray(), a.asarray(), ls, lonlim) #layer = ArrayUtil.meshLayer(x.asarray(), y.asarray(), a.asarray(), ls) if not proj is None: layer.setProjInfo(proj) # Add layer isadd = kwargs.pop('isadd', True) if isadd: zorder = kwargs.pop('zorder', None) select = kwargs.pop('select', True) if zorder is None: zorder = 0 self.add_layer(layer, zorder, select) self.axes.setDrawExtent(layer.getExtent().clone()) self.axes.setExtent(layer.getExtent().clone()) return MILayer(layer)
def imshow(self, *args, **kwargs): """ Display an image on the map. :param x: (*array_like*) Optional. X coordinate array. :param y: (*array_like*) Optional. Y coordinate array. :param z: (*array_like*) 2-D z value array. :param levs: (*array_like*) Optional. A list of floating point numbers indicating the level curves to draw, in increasing order. :param cmap: (*string*) Color map string. :param colors: (*list*) If None (default), the colormap specified by cmap will be used. If a string, like ‘r’ or ‘red’, all levels will be plotted in this color. If a tuple of matplotlib color args (string, float, rgb, etc), different levels will be plotted in different colors in the order specified. :param fill_value: (*float*) Fill_value. Default is ``-9999.0``. :param fill_color: (*color*) Fill_color. Default is None (white color). :param proj: (*ProjectionInfo*) Map projection of the data. Default is None. :param zorder: (*int*) Z-order of created layer for display. :param interpolation: (*string*) Interpolation option [None | bilinear | bicubic]. :returns: (*RasterLayer*) RasterLayer created from array data. """ cmap = plotutil.getcolormap(**kwargs) fill_value = kwargs.pop('fill_value', -9999.0) ls = kwargs.pop('symbolspec', None) n = len(args) isrgb = False if n <= 2: if isinstance(args[0], (list, tuple)): isrgb = True rgbdata = args[0] if isinstance(rgbdata[0], DimArray): x = rgbdata[0].dimvalue(1) y = rgbdata[0].dimvalue(0) else: x = minum.arange(0, rgbdata[0].shape[1]) y = minum.arange(0, rgbdata[0].shape[0]) elif args[0].ndim > 2: isrgb = True rgbdata = args[0] x = rgbdata.dimvalue(1) y = rgbdata.dimvalue(0) else: gdata = minum.asgridarray(args[0]) args = args[1:] elif n <=4: x = args[0] y = args[1] a = args[2] if isinstance(a, (list, tuple)): isrgb = True rgbdata = a elif a.ndim > 2: isrgb = True rgbdata = a else: gdata = minum.asgridarray(a, x, y, fill_value) args = args[3:] isadd = kwargs.pop('isadd', True) interpolation = kwargs.pop('interpolation', None) if isrgb: if isinstance(rgbdata, (list, tuple)): rgbd = [] for d in rgbdata: rgbd.append(d.asarray()) rgbdata = rgbd else: rgbdata = rgbdata.asarray() extent = [x[0],x[-1],y[0],y[-1]] igraphic = GraphicFactory.createImage(rgbdata, extent) x = plotutil.getplotdata(x) y = plotutil.getplotdata(y) layer = DrawMeteoData.createImageLayer(x, y, igraphic, 'layer_image') else: if len(args) > 0: if ls is None: level_arg = args[0] if isinstance(level_arg, int): cn = level_arg ls = LegendManage.createImageLegend(gdata, cn, cmap) else: if isinstance(level_arg, MIArray): level_arg = level_arg.aslist() ls = LegendManage.createImageLegend(gdata, level_arg, cmap) else: if ls is None: ls = LegendManage.createImageLegend(gdata, cmap) plotutil.setlegendscheme(ls, **kwargs) fill_color = kwargs.pop('fill_color', None) if not fill_color is None: cb = ls.getLegendBreaks().get(ls.getBreakNum() - 1) if cb.isNoData(): cb.setColor(plotutil.getcolor(fill_color)) layer = DrawMeteoData.createRasterLayer(gdata, 'layer', ls) proj = kwargs.pop('proj', None) if not proj is None: layer.setProjInfo(proj) if not interpolation is None: layer.setInterpolation(interpolation) if isadd: zorder = kwargs.pop('zorder', None) select = kwargs.pop('select', True) if zorder is None: zorder = 0 self.add_layer(layer, zorder, select) self.axes.setDrawExtent(layer.getExtent().clone()) self.axes.setExtent(layer.getExtent().clone()) return MILayer(layer)
def scatter(self, *args, **kwargs): """ Make a scatter plot on a map. :param x: (*array_like*) Input x data. :param y: (*array_like*) Input y data. :param z: (*array_like*) Input z data. :param levs: (*array_like*) Optional. A list of floating point numbers indicating the level curves to draw, in increasing order. :param cmap: (*string*) Color map string. :param colors: (*list*) If None (default), the colormap specified by cmap will be used. If a string, like ‘r’ or ‘red’, all levels will be plotted in this color. If a tuple, different levels will be plotted in different colors in the order specified. :param size: (*int of list*) Marker size. :param marker: (*string*) Marker of the points. :param fill: (*boolean*) Fill markers or not. Default is True. :param edge: (*boolean*) Draw edge of markers or not. Default is True. :param facecolor: (*Color*) Fill color of markers. Default is black. :param edgecolor: (*Color*) Edge color of markers. Default is black. :param proj: (*ProjectionInfo*) Map projection of the data. Default is None. :param zorder: (*int*) Z-order of created layer for display. :returns: (*VectoryLayer*) Point VectoryLayer. """ n = len(args) if n == 1: a = args[0] y = a.dimvalue(0) x = a.dimvalue(1) args = args[1:] else: x = args[0] y = args[1] if not isinstance(x, MIArray): x = minum.array(x) if not isinstance(y, MIArray): y = minum.array(y) if n == 2: a = x args = args[2:] else: a = args[2] if not isinstance(a, MIArray): a = minum.array(a) args = args[3:] ls = kwargs.pop('symbolspec', None) if ls is None: isunique = False colors = kwargs.get('colors', None) if not colors is None: if isinstance(colors, (list, tuple)) and len(colors) == len(x): isunique = True size = kwargs.get('size', None) if not size is None: if isinstance(size, (list, tuple, MIArray)) and len(size) == len(x): isunique = True if isunique: ls = LegendManage.createUniqValueLegendScheme(len(x), ShapeTypes.Point) else: ls = plotutil.getlegendscheme(args, a.min(), a.max(), **kwargs) ls = plotutil.setlegendscheme_point(ls, **kwargs) if a.size == ls.getBreakNum() and ls.getLegendType() == LegendType.UniqueValue: layer = DrawMeteoData.createSTPointLayer_Unique(a.array, x.array, y.array, ls, 'layer', 'data') else: layer = DrawMeteoData.createSTPointLayer(a.array, x.array, y.array, ls, 'layer', 'data') proj = kwargs.pop('proj', None) if not proj is None: layer.setProjInfo(proj) avoidcoll = kwargs.pop('avoidcoll', None) if not avoidcoll is None: layer.setAvoidCollision(avoidcoll) # Add layer isadd = kwargs.pop('isadd', True) if isadd: zorder = kwargs.pop('zorder', None) select = kwargs.pop('select', True) self.add_layer(layer, zorder, select) self.axes.setDrawExtent(layer.getExtent().clone()) self.axes.setExtent(layer.getExtent().clone()) return MILayer(layer)
def plot(self, *args, **kwargs): """ Plot lines and/or markers to the map. :param x: (*array_like*) Input x data. :param y: (*array_like*) Input y data. :param style: (*string*) Line style for plot. :param linewidth: (*float*) Line width. :param color: (*Color*) Line color. :returns: (*VectoryLayer*) Line VectoryLayer. """ fill_value = kwargs.pop('fill_value', -9999.0) proj = kwargs.pop('proj', None) order = kwargs.pop('order', None) n = len(args) xdatalist = [] ydatalist = [] styles = [] if n == 1: ydata = plotutil.getplotdata(args[0]) if isinstance(args[0], DimArray): xdata = args[0].dimvalue(0) else: xdata = [] for i in range(0, len(args[0])): xdata.append(i) xdatalist.append(minum.asarray(xdata).array) ydatalist.append(minum.asarray(ydata).array) elif n == 2: if isinstance(args[1], basestring): ydata = plotutil.getplotdata(args[0]) if isinstance(args[0], DimArray): xdata = args[0].dimvalue(0) else: xdata = [] for i in range(0, len(args[0])): xdata.append(i) styles.append(args[1]) else: xdata = plotutil.getplotdata(args[0]) ydata = plotutil.getplotdata(args[1]) xdatalist.append(minum.asarray(xdata).array) ydatalist.append(minum.asarray(ydata).array) else: c = 'x' for arg in args: if c == 'x': xdatalist.append(minum.asarray(arg).array) c = 'y' elif c == 'y': ydatalist.append(minum.asarray(arg).array) c = 's' elif c == 's': if isinstance(arg, basestring): styles.append(arg) c = 'x' else: styles.append('-') xdatalist.append(minum.asarray(arg).array) c = 'y' snum = len(xdatalist) if len(styles) == 0: styles = None else: while len(styles) < snum: styles.append('-') #Get plot data styles - Legend lines = [] ls = kwargs.pop('legend', None) if ls is None: if styles != None: for i in range(0, len(styles)): line = plotutil.getplotstyle(styles[i], str(i), **kwargs) lines.append(line) else: for i in range(0, snum): label = kwargs.pop('label', 'S_' + str(i + 1)) line = plotutil.getlegendbreak('line', **kwargs)[0] line.setCaption(label) lines.append(line) ls = LegendScheme(lines) layer = DrawMeteoData.createPolylineLayer(xdatalist, ydatalist, ls, \ 'Plot_lines', 'ID', -180, 180) if (proj != None): layer.setProjInfo(proj) # Add layer isadd = kwargs.pop('isadd', True) if isadd: zorder = kwargs.pop('zorder', None) select = kwargs.pop('select', True) self.add_layer(layer, zorder, select) self.axes.setDrawExtent(layer.getExtent().clone()) self.axes.setExtent(layer.getExtent().clone()) return MILayer(layer)
def geoshow(self, *args, **kwargs): ''' Display map layer or longitude latitude data. Syntax: -------- geoshow(shapefilename) - Displays the map data from a shape file. geoshow(layer) - Displays the map data from a map layer which may created by ``shaperead`` function. geoshow(S) - Displays the vector geographic features stored in S as points, multipoints, lines, or polygons. geoshow(lat, lon) - Displays the latitude and longitude vectors. ''' islayer = False if isinstance(args[0], basestring): fn = args[0] if not fn.endswith('.shp'): fn = fn + '.shp' if not os.path.exists(fn): fn = os.path.join(migl.mapfolder, fn) if os.path.exists(fn): layer = migeo.shaperead(fn) islayer = True else: raise IOError('File not exists: ' + fn) elif isinstance(args[0], MILayer): layer = args[0] islayer = True if islayer: layer = layer.layer visible = kwargs.pop('visible', True) layer.setVisible(visible) order = kwargs.pop('order', None) if layer.getLayerType() == LayerTypes.ImageLayer: if order is None: self.add_layer(layer) else: self.add_layer(layer, order) else: #LegendScheme ls = kwargs.pop('symbolspec', None) if ls is None: if len(kwargs) > 0 and layer.getLegendScheme().getBreakNum() == 1: lb = layer.getLegendScheme().getLegendBreaks().get(0) btype = lb.getBreakType() geometry = 'point' if btype == BreakTypes.PolylineBreak: geometry = 'line' elif btype == BreakTypes.PolygonBreak: geometry = 'polygon' lb, isunique = plotutil.getlegendbreak(geometry, **kwargs) layer.getLegendScheme().getLegendBreaks().set(0, lb) else: layer.setLegendScheme(ls) if order is None: self.add_layer(layer) else: self.add_layer(layer, order) #Labels labelfield = kwargs.pop('labelfield', None) if not labelfield is None: labelset = layer.getLabelSet() labelset.setFieldName(labelfield) fontname = kwargs.pop('fontname', 'Arial') fontsize = kwargs.pop('fontsize', 14) bold = kwargs.pop('bold', False) if bold: font = Font(fontname, Font.BOLD, fontsize) else: font = Font(fontname, Font.PLAIN, fontsize) labelset.setLabelFont(font) lcolor = kwargs.pop('labelcolor', None) if not lcolor is None: lcolor = miutil.getcolor(lcolor) labelset.setLabelColor(lcolor) xoffset = kwargs.pop('xoffset', 0) labelset.setXOffset(xoffset) yoffset = kwargs.pop('yoffset', 0) labelset.setYOffset(yoffset) avoidcoll = kwargs.pop('avoidcoll', True) decimals = kwargs.pop('decimals', None) if not decimals is None: labelset.setAutoDecimal(False) labelset.setDecimalDigits(decimals) labelset.setAvoidCollision(avoidcoll) layer.addLabels() self.axes.setDrawExtent(layer.getExtent().clone()) self.axes.setExtent(layer.getExtent().clone()) return MILayer(layer) else: if isinstance(args[0], Graphic): graphic = args[0] displaytype = 'point' stype = graphic.getShape().getShapeType() if stype == ShapeTypes.Polyline: displaytype = 'line' elif stype == ShapeTypes.Polygon: displaytype = 'polygon' lbreak, isunique = plotutil.getlegendbreak(displaytype, **kwargs) graphic.setLegend(lbreak) self.add_graphic(graphic) elif isinstance(args[0], Shape): shape = args[0] displaytype = 'point' stype = shape.getShapeType() if stype == ShapeTypes.Polyline: displaytype = 'line' elif stype == ShapeTypes.Polygon: displaytype = 'polygon' lbreak, isunique = plotutil.getlegendbreak(displaytype, **kwargs) graphic = Graphic(shape, lbreak) self.add_graphic(graphic) elif len(args) == 2: lat = args[0] lon = args[1] displaytype = kwargs.pop('displaytype', 'line') if isinstance(lat, (int, float)): displaytype = 'point' else: if len(lat) == 1: displaytype = 'point' else: if isinstance(lon, (MIArray, DimArray)): lon = lon.aslist() if isinstance(lat, (MIArray, DimArray)): lat = lat.aslist() lbreak, isunique = plotutil.getlegendbreak(displaytype, **kwargs) iscurve = kwargs.pop('iscurve', False) if displaytype == 'point': graphic = self.axes.addPoint(lat, lon, lbreak) elif displaytype == 'polyline' or displaytype == 'line': graphic = self.axes.addPolyline(lat, lon, lbreak, iscurve) elif displaytype == 'polygon': graphic = self.axes.addPolygon(lat, lon, lbreak) return graphic
def trajsplayer(self): if self.dataset.isTrajData(): return MILayer(self.dataset.getDataInfo().createTrajStartPointLayer()) else: return None
def trajlayer(self): if self.dataset.isTrajData(): return MILayer(self.dataset.getDataInfo().createTrajLineLayer()) else: return None