示例#1
0
def sym_wave(dim, sym_phi):
    """Return symbolic expressions for the wave equation system given a desired
    solution. (Note: In order to support manufactured solutions, we modify the wave
    equation to add a source term (f). If the solution is exact, this term should
    be 0.)
    """

    sym_c = pmbl.var("c")
    sym_coords = prim.make_sym_vector("x", dim)
    sym_t = pmbl.var("t")

    # f = phi_tt - c^2 * div(grad(phi))
    sym_f = sym.diff(sym_t)(sym.diff(sym_t)(sym_phi)) - sym_c**2\
                * sym.div(sym.grad(dim, sym_phi))

    # u = phi_t
    sym_u = sym.diff(sym_t)(sym_phi)

    # v = c*grad(phi)
    sym_v = [sym_c * sym.diff(sym_coords[i])(sym_phi) for i in range(dim)]

    # rhs(u part) = c*div(v) + f
    # rhs(v part) = c*grad(u)
    sym_rhs = flat_obj_array(sym_c * sym.div(sym_v) + sym_f,
                             make_obj_array([sym_c]) * sym.grad(dim, sym_u))

    return sym_u, sym_v, sym_f, sym_rhs
示例#2
0
def test_symbolic_div():
    """
    Compute the symbolic divergence of a vector expression and compare it to an
    expected result.
    """
    # (Equivalent to make_obj_array([pmbl.var("x")[i] for i in range(3)]))
    sym_coords = pmbl.make_sym_vector("x", 3)
    sym_x = sym_coords[0]
    sym_y = sym_coords[1]

    sym_f = make_obj_array([sym_x, sym_x * sym_y, sym_y])

    sym_div_f = sym.div(sym_f)
    expected_sym_div_f = 1 + sym_x + 0
    assert sym_div_f == expected_sym_div_f
示例#3
0
def sym_diffusion(dim, sym_alpha, sym_u):
    """Return a symbolic expression for the diffusion operator applied to a function.
    """
    return sym.div([sym_alpha * grad_i for grad_i in sym.grad(dim, sym_u)])
示例#4
0
def sym_diffusion(dim, alpha, sym_u):
    """Return a symbolic expression for the diffusion operator applied to a function.
    """
    return alpha * sym.div(sym.grad(dim, sym_u))