if __name__ == "__main__": args = parse_args() if args.cfg_file is not None: cfg_from_file(args.cfg_file) if args.gpu_id != -1: cfg.GPU_ID = args.gpu_id print('Using config:') pprint.pprint(cfg) now = datetime.datetime.now(dateutil.tz.tzlocal()) timestamp = now.strftime('%Y_%m_%d_%H_%M_%S') datadir = 'Data/%s' % cfg.DATASET_NAME dataset = TextDataset(datadir, cfg.EMBEDDING_TYPE, 1) filename_test = '%s/test' % (datadir) dataset.test = dataset.get_data(filename_test) if cfg.TRAIN.FLAG: filename_train = '%s/train' % (datadir) dataset.train = dataset.get_data(filename_train) ckt_logs_dir = "ckt_logs/%s/%s_%s" % (cfg.DATASET_NAME, cfg.CONFIG_NAME, timestamp) mkdir_p(ckt_logs_dir) else: s_tmp = cfg.TRAIN.PRETRAINED_MODEL ckt_logs_dir = s_tmp[:s_tmp.find('.ckpt')] model = CondGAN(image_shape=dataset.image_shape) algo = CondGANTrainer(model=model, dataset=dataset,
if __name__ == "__main__": args = parse_args() if args.cfg_file is not None: cfg_from_file(args.cfg_file) if args.gpu_id != -1: cfg.GPU_ID = args.gpu_id print('Using config:') pprint.pprint(cfg) now = datetime.datetime.now(dateutil.tz.tzlocal()) timestamp = now.strftime('%Y_%m_%d_%H_%M_%S') # datadir = 'Data/%s' % cfg.DATASET_NAME datadir = cfg.DATASET_NAME dataset = TextDataset(datadir, cfg.EMBEDDING_TYPE, 4) filename_test = datadir # dataset.test = dataset.get_data(filename_test) dataset.test = dataset.get_data(cfg.DATASET_NAME) if cfg.TRAIN.FLAG: filename_train = datadir # dataset.train = dataset.get_data(filename_train) dataset.train = dataset.get_data(cfg.DATASET_NAME) ckt_logs_dir = "ckt_logs/%s/%s_%s" % \ (cfg.DATASET_NAME, cfg.CONFIG_NAME, timestamp) mkdir_p(ckt_logs_dir) else: s_tmp = cfg.TRAIN.PRETRAINED_MODEL ckt_logs_dir = s_tmp[:s_tmp.find('.ckpt')] model = CondGAN(lr_imsize=int(dataset.image_shape[0] /
return args if __name__ == "__main__": args = parse_args() if args.cfg_file is not None: cfg_from_file(args.cfg_file) if args.gpu_id != -1: cfg.GPU_ID = args.gpu_id print('Using config:') pprint.pprint(cfg) now = datetime.datetime.now(dateutil.tz.tzlocal()) timestamp = now.strftime('%Y_%m_%d_%H_%M_%S') datadir = 'Data/%s' % cfg.DATASET_NAME dataset = TextDataset(datadir, cfg.EMBEDDING_TYPE, 1) filename_test = '%s/test' % (datadir) dataset.test = dataset.get_data(filename_test) if cfg.TRAIN.FLAG: filename_train = '%s/train' % (datadir) dataset.train = dataset.get_data(filename_train) ckt_logs_dir = "ckt_logs/%s/%s_%s" % \ (cfg.DATASET_NAME, cfg.CONFIG_NAME, timestamp) mkdir_p(ckt_logs_dir) else: s_tmp = cfg.TRAIN.PRETRAINED_MODEL ckt_logs_dir = s_tmp[:s_tmp.find('.ckpt')] model = CondGAN( image_shape=dataset.image_shape
cfg_from_file(args.cfg_file) if args.gpu_id != -1: cfg.GPU_ID = args.gpu_id # Load text embeddings generated from the encoder cap_path = cfg.TEST.CAPTION_PATH t_file = torchfile.load(cap_path) captions_list = t_file.raw_txt print(t_file.fea_txt) embeddings = np.concatenate(t_file.fea_txt, axis=0) num_embeddings = len(captions_list) print('Successfully load sentences from: ', cap_path) print('Total number of sentences:', num_embeddings) print('num_embeddings:', num_embeddings, embeddings.shape) datadir = 'Data/%s' % cfg.DATASET_NAME dataset = TextDataset(datadir, cfg.EMBEDDING_TYPE, 1) # path to save generated samples save_dir = cap_path[:cap_path.find('.t7')] if num_embeddings > 0: batch_size = np.minimum(num_embeddings, cfg.TEST.BATCH_SIZE) # Build StackGAN and load the model config = tf.ConfigProto(allow_soft_placement=True) with tf.Session(config=config) as sess: with tf.device("/gpu:%d" % cfg.GPU_ID): embeddings_holder, fake_images_opt, fake_images_2_opt =\ build_model(sess, dataset.image_shape, embeddings.shape[-1], batch_size) count = 0 while count < num_embeddings:
import argparse import pprint from misc.datasets import TextDataset from model import CondGAN from trainer import CondGANTrainer from misc.get_configs import parse_args from misc.utils import mkdir_p if __name__ == "__main__": args = parse_args() print(args) now = datetime.datetime.now() timestamp = now.strftime('%Y_%m_%d_%H_%M_%S') dataset = TextDataset(datadir='datasets/' + args.dataset + '/') print("Dataset created!") dataset.train = dataset.get_data() model = CondGAN(args, image_shape=dataset.image_shape) print("model created!") # if args.for_training: ckt_logs_dir = "ckt_logs/%s" % \ ("{}_logs".format(args.dataset)) res_dir = "retrieved_res/%s" % \ ("{}_res".format(args.dataset)) mkdir_p(ckt_logs_dir) mkdir_p(res_dir) with open(ckt_logs_dir + '/args.txt', 'w') as fid:
if __name__ == "__main__": args = parse_args() if args.cfg_file is not None: cfg_from_file(args.cfg_file) if args.gpu_id != -1: cfg.GPU_ID = args.gpu_id print('Using config:') pprint.pprint(cfg) now = datetime.datetime.now(dateutil.tz.tzlocal()) timestamp = now.strftime('%Y_%m_%d_%H_%M_%S') # datadir = 'Data/%s' % cfg.DATASET_NAME datadir = cfg.DATASET_NAME dataset = TextDataset(datadir, cfg.EMBEDDING_TYPE, 1) filename_test = datadir # dataset.test = dataset.get_data(filename_test,aug_flag=False) if cfg.TRAIN.FLAG: filename_train = datadir dataset.train = dataset.get_data(filename_train, aug_flag=False) ckt_logs_dir = "ckt_logs/%s/%s_%s" % \ (cfg.DATASET_NAME, cfg.CONFIG_NAME, timestamp) mkdir_p(ckt_logs_dir) else: s_tmp = cfg.TRAIN.PRETRAINED_MODEL ckt_logs_dir = s_tmp[:s_tmp.find('.ckpt')] model = CondGAN(image_shape=dataset.image_shape)