def gen_data(self, dir_in, dir_out=None, file_id_list=None, id_list=None, return_dict=False): """ Prepare atom labels from wav files. If id_list is not None, only the ids listed there are generated, otherwise for each .wav file in the dir_in. Atoms are computed by the wcad algorithm. Examples with more than 70 atoms are rejected. One can create a new file_id_list by uncommenting the lines before the return statement. Nevertheless, the current file_id_list is not substituted by it. The algorithm also saves the extracted phrase component in dir_out/id_name.phrase, if dir_out is not None. :param dir_in: Directory containing the original wav files. :param dir_out: Directory where the labels are stored. If None, no labels are stored. :param file_id_list: Name of the file containing the ids. Normalisation parameters are saved using this name to differentiate parameters between subsets. :param id_list: The list of utterances to process. Should have the form uttId1 \\n uttId2 \\n ...\\n uttIdN. If None, all wav files in audio_dir are used. :param return_dict: If True, returns an OrderedDict of all samples as first output. :return: Returns mean=0.0, std_dev, min, max of atoms. """ # Fill file_id_list by .wav files in dir_in if not given and set an appropriate file_id_list_name. if id_list is None: id_list = list() filenames = glob.glob(os.path.join(dir_in, "*.wav")) for filename in filenames: id_list.append(os.path.splitext(os.path.basename(filename))[0]) file_id_list_name = "all" else: file_id_list_name = os.path.splitext( os.path.basename(file_id_list))[0] if dir_out is not None: makedirs_safe(dir_out) if return_dict: label_dict = OrderedDict() mean_std_ext_atom = MeanStdDevExtractor() min_max_ext_atom = MinMaxExtractor() mean_std_ext_phrase = MeanStdDevExtractor() min_max_ext_phrase = MinMaxExtractor() # Compute Atoms. from wcad import WaveInput, PitchExtractor, MultiphraseExtractor, DictionaryGenerator, AtomExtrator, ModelCreator, ModelSaver, Params, Paths correct_utts = list() self.logger.info("Create atom labels for " + "[{0}]".format(", ".join(str(i) for i in id_list))) for id_name in id_list: self.logger.debug("Create atom labels for " + id_name) # Wcad has to be called in its root directory, therefore a change dir operation is necessary. cwd = os.getcwd() os.chdir(self.wcad_root) args = [dir_in + "/" + id_name + ".wav", dir_out] print(args) params = Params() # Overwrite the possible theta values by selected values. params.local_atoms_thetas = self.theta_interval params.k = [self.k] # params.min_atom_amp = 0.1 paths = Paths(args, params) # Start the extraction process. start_t = time.time() waveform = WaveInput(paths.wav, params).read() pitch = PitchExtractor(waveform, params, paths).compute() # Compute the phrase component. phrase = MultiphraseExtractor(pitch, waveform, params, paths).compute() phrase_curve = phrase.curve # Extract atroms. dictionary = DictionaryGenerator(params, paths).compute() atoms = AtomExtrator(waveform, pitch, phrase, dictionary, params, paths).compute() # Create a model. model = ModelCreator(phrase, atoms, pitch).compute() print(('Model created in %s seconds' % (time.time() - start_t))) # Save the atoms. ModelSaver(model, params, paths).save() os.chdir(cwd) # Check if output can be correct. possible_extraction_failure = False if len(atoms) < 50 and not any(a.amp > 10 for a in atoms): correct_utts.append(id_name) else: self.logger.warning("Possible fail of atom extractor for " + id_name + " (atoms: " + str(len(atoms)) + ", frames: " + str(len(phrase_curve)) + ", max: " + str(max(a.amp for a in atoms)) + ").") possible_extraction_failure = True atoms.sort(key=lambda x: x.position) # print_atoms(atoms) # Get audio length needed to trim the atoms. duration = self.get_audio_length(id_name, dir_in, self.frame_size_ms) # The algorithm generates a few atoms at negative positions, # pad them into the first atom at positive position. padded_amp = 0 padded_theta = 0 for idx, atom in enumerate(atoms): if atom.position < 0: padded_amp += atom.amp padded_theta += atom.theta else: atoms[idx].amp += padded_amp # Pad the amplitude. atoms[idx].theta = (atoms[idx].theta + padded_theta) / (idx + 1) del atoms[:idx] # Remove the negative atoms from the list. break # print_atoms(atoms) # The algorithm might also generate a few atoms beyond the last label, # pad them into the last label. padded_amp = 0 padded_theta = 0 for idx, atom in reversed(list(enumerate(atoms))): if atom.position * self.frame_size_ms > duration: padded_amp += atom.amp padded_theta += atom.theta else: atoms[idx].amp += padded_amp atoms[idx].theta = (atoms[idx].theta + padded_theta) / (len(atoms) - idx) atoms = atoms[:-(len(atoms) - idx - 1) or None] # Remove atoms beyond last label. break # print_atoms(atoms) # Create a label for each frame (size of frame_size_ms) with amplitude and theta of contained atoms. np_atom_labels = AtomLabelGen.atoms_to_labels( atoms, self.theta_interval, int(duration / self.frame_size_ms)) np_atom_amps = np.sum(np_atom_labels, axis=1) if not possible_extraction_failure: # Only add successful extractions to mean and std_dev computation. mean_std_ext_atom.add_sample( np_atom_amps[np_atom_amps[:, 0] != 0.0] ) # Only compute std_dev from atoms. min_max_ext_atom.add_sample(np_atom_amps) # mean_std_ext_phrase.add_sample(phrase_curve) # min_max_ext_phrase.add_sample(phrase_curve) if return_dict: label_dict[id_name] = np_atom_labels if dir_out is not None: # Save phrase, because it might be used in synthesis. phrase_curve.astype('float32').tofile( os.path.join(dir_out, id_name + self.ext_phrase)) # Save atoms binary (float32). np_atom_labels.astype('float32').tofile( os.path.join(dir_out, id_name + self.ext_atoms)) # Create a readable version of the atom data. # np.savetxt(os.path.join(dir_out, id_name + self.ext_atoms + ".txt"), np_atom_labels) # Manually set mean of atoms to 0, otherwise frames without atom will have an amplitude. mean_std_ext_atom.sum_frames[:] = 0.0 mean_std_ext_atom.sum_squared_frames[ 1] = mean_std_ext_atom.sum_length * self.theta_interval[-1] mean_std_ext_atom.save(os.path.join(dir_out, file_id_list_name)) min_max_ext_atom.save(os.path.join(dir_out, file_id_list_name)) # mean_std_ext_phrase.save(os.path.join(dir_out, file_id_list_name + '-phrase')) # min_max_ext_phrase.save(os.path.join(dir_out, file_id_list_name + '-phrase')) mean_atoms, std_atoms = mean_std_ext_atom.get_params() min_atoms, max_atoms = min_max_ext_atom.get_params() # mean_phrase, std_phrase = mean_std_ext_phrase.get_params() # min_phrase, max_phrase = min_max_ext_atom.get_params() # Use this block to save the part of the file_id_list for which atom extraction was successful into a new file. if correct_utts: with open( os.path.join( os.path.dirname(dir_in), "wcad_" + os.path.basename(file_id_list_name) + ".txt"), 'w') as f: f.write('\n'.join(correct_utts) + '\n') if return_dict: # Return dict of labels for all utterances. return label_dict, \ mean_atoms, std_atoms, \ min_atoms, max_atoms # mean_phrase, std_phrase, \ # min_phrase, max_phrase else: return mean_atoms, std_atoms, \ min_atoms, max_atoms
def gen_data(self, dir_in, dir_out=None, file_id_list=None, id_list=None, add_deltas=False, return_dict=False): """ Prepare LF0 and V/UV features from audio files. If add_delta is false each numpy array has the dimension num_frames x 2 [f0, vuv], otherwise the deltas and double deltas are added between the features resulting in num_frames x 4 [lf0(3*1), vuv]. :param dir_in: Directory where the .wav files are stored for each utterance to process. :param dir_out: Main directory where the labels and normalisation parameters are saved to subdirectories. If None, labels are not saved. :param file_id_list: Name of the file containing the ids. Normalisation parameters are saved using this name to differentiate parameters between subsets. :param id_list: The list of utterances to process. Should have the form uttId1 \\n uttId2 \\n ...\\n uttIdN. If None, all file in audio_dir are used. :param add_deltas: Add deltas and double deltas to all features except vuv. :param return_dict: If true, returns an OrderedDict of all samples as first output. :return: Returns two normalisation parameters as tuple. If return_dict is True it returns all processed labels in an OrderedDict followed by the two normalisation parameters. """ # Fill file_id_list by .wav files in dir_in if not given and set an appropriate file_id_list_name. if id_list is None: id_list = list() filenames = glob.glob(os.path.join(dir_in, "*.wav")) for filename in filenames: id_list.append(os.path.splitext(os.path.basename(filename))[0]) file_id_list_name = "all" else: file_id_list_name = os.path.splitext(os.path.basename(file_id_list))[0] # Create directories in dir_out if it is given. if dir_out is not None: if add_deltas: makedirs_safe(os.path.join(dir_out, LF0LabelGen.dir_deltas)) else: makedirs_safe(os.path.join(dir_out, LF0LabelGen.dir_lf0)) makedirs_safe(os.path.join(dir_out, LF0LabelGen.dir_vuv)) # Create the return dictionary if required. if return_dict: label_dict = OrderedDict() # Create normalisation computation units. norm_params_ext_lf0 = MeanStdDevExtractor() # norm_params_ext_vuv = MeanStdDevExtractor() norm_params_ext_deltas = MeanStdDevExtractor() logging.info("Extract WORLD LF0 features for " + "[{0}]".format(", ".join(str(i) for i in id_list))) for file_name in id_list: logging.debug("Extract WORLD LF0 features from " + file_name) # Load audio file and extract features. audio_name = os.path.join(dir_in, file_name + ".wav") raw, fs = soundfile.read(audio_name) _f0, t = pyworld.dio(raw, fs) # Raw pitch extraction. TODO: Use magphase here? f0 = pyworld.stonemask(raw, _f0, t, fs) # Pitch refinement. # Compute lf0 and vuv information. lf0 = np.log(f0, dtype=np.float32) lf0[lf0 <= math.log(LF0LabelGen.f0_silence_threshold)] = LF0LabelGen.lf0_zero lf0, vuv = interpolate_lin(lf0) if add_deltas: # Compute the deltas and double deltas for all features. lf0_deltas, lf0_double_deltas = compute_deltas(lf0) # Combine them to a single feature sample. labels = np.concatenate((lf0, lf0_deltas, lf0_double_deltas, vuv), axis=1) # Save into return dictionary and/or file. if return_dict: label_dict[file_name] = labels if dir_out is not None: labels.tofile(os.path.join(dir_out, LF0LabelGen.dir_deltas, file_name + LF0LabelGen.ext_deltas)) # Add sample to normalisation computation unit. norm_params_ext_deltas.add_sample(labels) else: # Save into return dictionary and/or file. if return_dict: label_dict[file_name] = np.concatenate((lf0, vuv), axis=1) if dir_out is not None: lf0.tofile(os.path.join(dir_out, LF0LabelGen.dir_lf0, file_name + LF0LabelGen.ext_lf0)) vuv.astype(np.float32).tofile(os.path.join(dir_out, LF0LabelGen.dir_vuv, file_name + LF0LabelGen.ext_vuv)) # Add sample to normalisation computation unit. norm_params_ext_lf0.add_sample(lf0) # norm_params_ext_vuv.add_sample(vuv) # Save mean and std dev of all features. if not add_deltas: norm_params_ext_lf0.save(os.path.join(dir_out, LF0LabelGen.dir_lf0, file_id_list_name)) # norm_params_ext_vuv.save(os.path.join(dir_out, LF0LabelGen.dir_vuv, file_id_list_name)) else: # Manually set vuv normalisation parameters before saving. norm_params_ext_deltas.sum_frames[-1] = 0.0 # Mean = 0.0 norm_params_ext_deltas.sum_squared_frames[-1] = norm_params_ext_deltas.sum_length # Variance = 1.0 norm_params_ext_deltas.save(os.path.join(dir_out, LF0LabelGen.dir_deltas, file_id_list_name)) # Get normalisation parameters. if not add_deltas: norm_lf0 = norm_params_ext_lf0.get_params() # norm_vuv = norm_params_ext_vuv.get_params() norm_first = np.concatenate((norm_lf0[0], (0.0,)), axis=0) norm_second = np.concatenate((norm_lf0[1], (1.0,)), axis=0) else: norm_first, norm_second = norm_params_ext_deltas.get_params() if return_dict: # Return dict of labels for all utterances. return label_dict, norm_first, norm_second else: return norm_first, norm_second