def loading_data(): mean_std = cfg_data.MEAN_STD log_para = cfg_data.LOG_PARA factor = cfg_data.LABEL_FACTOR train_main_transform = own_transforms.Compose( [own_transforms.RandomHorizontallyFlip()]) img_transform = standard_transforms.Compose([ standard_transforms.ToTensor(), standard_transforms.Normalize(*mean_std) ]) gt_transform = standard_transforms.Compose([ own_transforms.GTScaleDown(factor), own_transforms.LabelNormalize(log_para) ]) restore_transform = standard_transforms.Compose([ own_transforms.DeNormalize(*mean_std), standard_transforms.ToPILImage() ]) train_set = SHHA(cfg_data.DATA_PATH + '/train_data', mode='train', preload=True, main_transform=train_main_transform, img_transform=img_transform, gt_transform=gt_transform) train_loader = None if cfg_data.TRAIN_BATCH_SIZE == 1: train_loader = DataLoader(train_set, batch_size=1, num_workers=0, collate_fn=SHHA_raw_collate, shuffle=True, drop_last=True) elif cfg_data.TRAIN_BATCH_SIZE > 1: train_loader = DataLoader(train_set, batch_size=cfg_data.TRAIN_BATCH_SIZE, num_workers=8, collate_fn=SHHA_crop_collate, shuffle=True, drop_last=True) val_set = SHHA(cfg_data.DATA_PATH + '/test_data', mode='test', preload=True, main_transform=None, img_transform=img_transform, gt_transform=gt_transform) val_loader = DataLoader(val_set, batch_size=cfg_data.VAL_BATCH_SIZE, num_workers=0, collate_fn=SHHA_raw_collate, shuffle=True, drop_last=False) return train_loader, val_loader, restore_transform
def data_transforms(cfg_data): mean_std = cfg_data.MEAN_STD log_para = cfg_data.LOG_PARA # train and val main data transformations if cfg_data.DATASET == 'City': train_main_transform = own_transforms.Compose([ own_transforms.RandomHorizontallyFlip() ]) val_main_transform = None elif cfg_data.DATASET in ['FDST', 'PETS']: train_main_transform = standard_transforms.Compose([ own_transforms.FreeScale(cfg_data.TRAIN_SIZE), ]) val_main_transform = standard_transforms.Compose([ own_transforms.FreeScale(cfg_data.TRAIN_SIZE), ]) else: train_main_transform = own_transforms.Compose([ own_transforms.RandomCrop(cfg_data.TRAIN_SIZE), own_transforms.RandomHorizontallyFlip() ]) val_main_transform = None # image and gt transformations if cfg_data.DATASET == 'FDST': gt_transform = standard_transforms.Compose([ own_transforms.GTScaleDown(cfg_data.TRAIN_DOWNRATE), own_transforms.LabelNormalize(log_para) ]) else: gt_transform = standard_transforms.Compose([ own_transforms.LabelNormalize(log_para) ]) img_transform = standard_transforms.Compose([ standard_transforms.ToTensor(), standard_transforms.Normalize(*mean_std) ]) restore_transform = standard_transforms.Compose([ own_transforms.DeNormalize(*mean_std), standard_transforms.ToPILImage() ]) return train_main_transform, val_main_transform, img_transform, gt_transform, restore_transform
def loading_data(): # shanghai Tech A mean_std = cfg.DATA.MEAN_STD log_para = cfg.DATA.LOG_PARA factor = cfg.DATA.LABEL_FACTOR train_main_transform = own_transforms.Compose([ own_transforms.RandomCrop(cfg.TRAIN.INPUT_SIZE), own_transforms.RandomHorizontallyFlip() ]) val_main_transform = None img_transform = standard_transforms.Compose([ standard_transforms.ToTensor(), standard_transforms.Normalize(*mean_std) ]) gt_transform = standard_transforms.Compose([ own_transforms.GTScaleDown(factor), own_transforms.LabelNormalize(log_para) ]) restore_transform = standard_transforms.Compose([ own_transforms.DeNormalize(*mean_std), standard_transforms.ToPILImage() ]) train_set = UCF_QNRF(cfg.DATA.DATA_PATH + '/train', 'train', main_transform=train_main_transform, img_transform=img_transform, gt_transform=gt_transform) train_loader = DataLoader(train_set, batch_size=cfg.TRAIN.BATCH_SIZE, num_workers=8, shuffle=True, drop_last=True) val_set = UCF_QNRF(cfg.DATA.DATA_PATH + '/test', 'test', main_transform=val_main_transform, img_transform=img_transform, gt_transform=gt_transform) val_loader = DataLoader(val_set, batch_size=cfg.VAL.BATCH_SIZE, num_workers=8, shuffle=True, drop_last=False) return train_set, train_loader, val_set, val_loader, restore_transform
def loading_data(): mean_std = cfg_data.MEAN_STD log_para = cfg_data.LOG_PARA factor = cfg_data.LABEL_FACTOR train_main_transform = own_transforms.Compose([ own_transforms.RandomHorizontallyFlip() ]) img_transform = standard_transforms.Compose([ standard_transforms.ToTensor(), standard_transforms.Normalize(*mean_std) ]) gt_transform = standard_transforms.Compose([ own_transforms.GTScaleDown(factor), own_transforms.LabelNormalize(log_para) ]) restore_transform = standard_transforms.Compose([ own_transforms.DeNormalize(*mean_std), standard_transforms.ToPILImage() ]) if cfg_data.IS_CROSS_SCENE: train_set = AC(img_path=cfg_data.IMAGE_PATH, den_path=cfg_data.DENSITY_PATH + '/cross_scene_train', aud_path=cfg_data.AUDIO_PATH, mode='train', main_transform=train_main_transform, img_transform=img_transform, gt_transform=gt_transform, is_noise=cfg_data.IS_NOISE, brightness_decay=cfg_data.BRIGHTNESS, noise_sigma=cfg_data.NOISE_SIGMA, longest_side=cfg_data.LONGEST_SIDE ) else: train_set = AC(img_path=cfg_data.IMAGE_PATH, den_path=cfg_data.DENSITY_PATH + '/train', aud_path=cfg_data.AUDIO_PATH, mode='train', main_transform=train_main_transform, img_transform=img_transform, gt_transform=gt_transform, is_noise=cfg_data.IS_NOISE, brightness_decay=cfg_data.BRIGHTNESS, noise_sigma=cfg_data.NOISE_SIGMA, longest_side=cfg_data.LONGEST_SIDE, black_area_ratio=cfg_data.BLACK_AREA_RATIO, is_random=cfg_data.IS_RANDOM, is_denoise=cfg_data.IS_DENOISE ) train_loader = None if cfg_data.TRAIN_BATCH_SIZE == 1: train_loader = DataLoader(train_set, batch_size=1, num_workers=8, shuffle=True, drop_last=True) elif cfg_data.TRAIN_BATCH_SIZE > 1: train_loader = DataLoader(train_set, batch_size=cfg_data.TRAIN_BATCH_SIZE, num_workers=8, collate_fn=AC_collate, shuffle=True, drop_last=True) if cfg_data.IS_CROSS_SCENE: val_set = AC(img_path=cfg_data.IMAGE_PATH, den_path=cfg_data.DENSITY_PATH + '/cross_scene_val', aud_path=cfg_data.AUDIO_PATH, mode='val', main_transform=None, img_transform=img_transform, gt_transform=gt_transform, is_noise=cfg_data.IS_NOISE, brightness_decay=cfg_data.BRIGHTNESS, noise_sigma=cfg_data.NOISE_SIGMA, longest_side=cfg_data.LONGEST_SIDE ) else: val_set = AC(img_path=cfg_data.IMAGE_PATH, den_path=cfg_data.DENSITY_PATH + '/val', aud_path=cfg_data.AUDIO_PATH, mode='val', main_transform=None, img_transform=img_transform, gt_transform=gt_transform, is_noise=cfg_data.IS_NOISE, brightness_decay=cfg_data.BRIGHTNESS, noise_sigma=cfg_data.NOISE_SIGMA, longest_side=cfg_data.LONGEST_SIDE, black_area_ratio=cfg_data.BLACK_AREA_RATIO, is_random=cfg_data.IS_RANDOM, is_denoise=cfg_data.IS_DENOISE ) val_loader = DataLoader(val_set, batch_size=cfg_data.VAL_BATCH_SIZE, num_workers=1, shuffle=False, drop_last=False) if cfg_data.IS_CROSS_SCENE: test_set = AC(img_path=cfg_data.IMAGE_PATH, den_path=cfg_data.DENSITY_PATH + '/cross_scene_test', aud_path=cfg_data.AUDIO_PATH, mode='test', main_transform=None, img_transform=img_transform, gt_transform=gt_transform, is_noise=cfg_data.IS_NOISE, brightness_decay=cfg_data.BRIGHTNESS, noise_sigma=cfg_data.NOISE_SIGMA, longest_side=cfg_data.LONGEST_SIDE ) else: test_set = AC(img_path=cfg_data.IMAGE_PATH, den_path=cfg_data.DENSITY_PATH + '/test', aud_path=cfg_data.AUDIO_PATH, mode='test', main_transform=None, img_transform=img_transform, gt_transform=gt_transform, is_noise=cfg_data.IS_NOISE, brightness_decay=cfg_data.BRIGHTNESS, noise_sigma=cfg_data.NOISE_SIGMA, longest_side=cfg_data.LONGEST_SIDE, black_area_ratio=cfg_data.BLACK_AREA_RATIO, is_random=cfg_data.IS_RANDOM, is_denoise=cfg_data.IS_DENOISE ) test_loader = DataLoader(test_set, batch_size=cfg_data.VAL_BATCH_SIZE, num_workers=1, shuffle=False, drop_last=False) return train_loader, val_loader, test_loader, restore_transform