def __init__(self, func, y0, rtol, atol, first_step=None, safety=0.9, ifactor=10.0, dfactor=0.2, max_num_steps=2**31 - 1, **unused_kwargs): _handle_unused_kwargs(self, unused_kwargs) del unused_kwargs self.func = func self.y0 = y0 self.rtol = rtol if _is_iterable(rtol) else [rtol] * len(y0) self.atol = atol if _is_iterable(atol) else [atol] * len(y0) self.first_step = first_step self.safety = _convert_to_tensor(safety, dtype=torch.float64, device=y0[0].device) self.ifactor = _convert_to_tensor(ifactor, dtype=torch.float64, device=y0[0].device) self.dfactor = _convert_to_tensor(dfactor, dtype=torch.float64, device=y0[0].device) self.max_num_steps = _convert_to_tensor(max_num_steps, dtype=torch.int32, device=y0[0].device)
def __init__(self, func, y0, rtol, atol, implicit=True, max_order=_MAX_ORDER, safety=0.9, ifactor=10.0, dfactor=0.2, **unused_kwargs): _handle_unused_kwargs(self, unused_kwargs) del unused_kwargs self.func = func self.y0 = y0 self.rtol = rtol if _is_iterable(rtol) else [rtol] * len(y0) self.atol = atol if _is_iterable(atol) else [atol] * len(y0) self.implicit = implicit self.max_order = int(max(_MIN_ORDER, min(max_order, _MAX_ORDER))) self.safety = _convert_to_tensor(safety, dtype=torch.float64, device=y0[0].device) self.ifactor = _convert_to_tensor(ifactor, dtype=torch.float64, device=y0[0].device) self.dfactor = _convert_to_tensor(dfactor, dtype=torch.float64, device=y0[0].device)
def __init__(self, func, y0, atol, rtol, **unused_kwargs): _handle_unused_kwargs(self, unused_kwargs) del unused_kwargs self.func = func self.y0 = y0 self.atol = atol self.rtol = rtol
def __init__(self, func, y0, step_size=None, grid_constructor=None, **unused_kwargs): unused_kwargs.pop('rtol', None) unused_kwargs.pop('atol', None) _handle_unused_kwargs(self, unused_kwargs) del unused_kwargs self.func = func self.y0 = y0 if step_size is not None and grid_constructor is None: self.grid_constructor = self._grid_constructor_from_step_size( step_size) elif grid_constructor is None: self.grid_constructor = lambda f, y0, t: t else: raise ValueError( "step_size and grid_constructor are exclusive arguments.")