示例#1
0
    def __getitem__(self, index):
        # Image

        img_path = self.img_names[index]
        image = Image.open(img_path).convert('RGB')

        # Points
        name = ms.extract_fname(img_path).split(".")[0]
        points, counts = ms.point2mask(self.pointsJSON[name],
                                       image,
                                       return_count=True,
                                       n_classes=self.n_classes - 1)
        points = transforms.functional.to_pil_image(points)

        counts = torch.LongTensor(counts)
        original = transforms.ToTensor()(image)

        # Mask
        mask_path = self.mask_names[index]
        mask = load_mask(mask_path)

        # Mask
        cls_path = self.cls_names[index]
        maskClass = load_mask(cls_path)

        if self.transform_function is not None:
            image, points, mask, maskClass = self.transform_function(
                [image, points, mask, maskClass])

        maskVoid = maskClass != 255
        maskClass[maskClass == 255] = 0
        mask[mask == 255] = 0
        lcfcn_pointList = self.get_lcfcn_pointList(name)
        return {
            "images": image,
            "original": original,
            "points": points,
            "counts": counts,
            "index": index,
            "name": name,
            "image_id": int(name.replace("_", "")),
            "maskObjects": mask,
            "maskClasses": maskClass,
            "maskVoid": maskVoid.long(),
            "dataset": "voc",
            "lcfcn_pointList": lcfcn_pointList,
            "proposals_path": self.proposals_path,
            "split": self.split,
            "path": self.path
        }
def main():
    parser = argparse.ArgumentParser()

    parser.add_argument('-e', '--exp')
    parser.add_argument('-b', '--borgy', default=0, type=int)
    parser.add_argument('-br', '--borgy_running', default=0, type=int)
    parser.add_argument('-m', '--mode', default="summary")
    parser.add_argument('-r', '--reset', default="None")
    parser.add_argument('-s', '--status', type=int, default=0)
    parser.add_argument('-k', '--kill', type=int, default=0)
    parser.add_argument('-g', '--gpu', type=int)
    parser.add_argument('-c', '--configList', nargs="+", default=None)
    parser.add_argument('-l', '--lossList', nargs="+", default=None)
    parser.add_argument('-d', '--datasetList', nargs="+", default=None)
    parser.add_argument('-metric', '--metricList', nargs="+", default=None)
    parser.add_argument('-model', '--modelList', nargs="+", default=None)
    parser.add_argument('-p', '--predictList', nargs="+", default=None)

    args = parser.parse_args()

    if args.borgy or args.kill:
        global_prompt = input("Do all? \n(y/n)\n")

    # SEE IF CUDA IS AVAILABLE
    assert torch.cuda.is_available()
    print("CUDA: %s" % torch.version.cuda)
    print("Pytroch: %s" % torch.__version__)

    mode = args.mode
    exp_name = args.exp

    exp_dict = experiments.get_experiment_dict(args, exp_name)

    pp_main = None
    results = {}

    # Get Main Class
    project_name = os.path.realpath(__file__).split("/")[-2]
    MC = ms.MainClass(path_models="models",
                      path_datasets="datasets",
                      path_metrics="metrics/metrics.py",
                      path_losses="losses/losses.py",
                      path_samplers="addons/samplers.py",
                      path_transforms="addons/transforms.py",
                      path_saves="/mnt/projects/counting/Saves/main/",
                      project=project_name)

    key_set = set()
    for model_name, config_name, metric_name, dataset_name, loss_name in product(
            exp_dict["modelList"], exp_dict["configList"],
            exp_dict["metricList"], exp_dict["datasetList"],
            exp_dict["lossList"]):

        # if model_name in ["LC_RESFCN"]:
        #   loss_name = "water_loss"

        config = configs.get_config_dict(config_name)

        key = ("{} - {} - {}".format(model_name, config_name, loss_name),
               "{}_({})".format(dataset_name, metric_name))

        if key in key_set:
            continue

        key_set.add(key)

        main_dict = MC.get_main_dict(mode, dataset_name, model_name,
                                     config_name, config, args.reset,
                                     exp_dict["epochs"], metric_name,
                                     loss_name)
        main_dict["predictList"] = exp_dict["predictList"]

        if mode == "paths":
            print("\n{}_({})".format(dataset_name, model_name))
            print(main_dict["path_best_model"])
            # print( main_dict["exp_name"])

        predictList_str = ' '.join(exp_dict["predictList"])

        if args.status:
            results[key] = borgy.borgy_status(mode, config_name, metric_name,
                                              model_name, dataset_name,
                                              loss_name, args.reset,
                                              predictList_str)

            continue

        if args.kill:
            results[key] = borgy.borgy_kill(mode, config_name, metric_name,
                                            model_name, dataset_name,
                                            loss_name, args.reset,
                                            predictList_str)
            continue

        if args.borgy:
            results[key] = borgy.borgy_submit(project_name, global_prompt,
                                              mode, config_name, metric_name,
                                              model_name, dataset_name,
                                              loss_name, args.reset,
                                              predictList_str)

            continue

        if mode == "debug":
            debug.debug(main_dict)

        if mode == "validate":
            validate.validate(main_dict)
        if mode == "save_gam_points":
            train_set, _ = au.load_trainval(main_dict)
            model = ms.load_best_model(main_dict)
            for i in range(len(train_set)):
                print(i, "/", len(train_set))
                batch = ms.get_batch(train_set, [i])
                fname = train_set.path + "/gam_{}.pkl".format(
                    batch["index"].item())
                points = model.get_points(batch)
                ms.save_pkl(fname, points)
            import ipdb
            ipdb.set_trace()  # breakpoint ee49ab9f //

        if mode == "save_prm_points":
            train_set, _ = au.load_trainval(main_dict)
            model = ms.load_best_model(main_dict)
            for i in range(len(train_set)):
                print(i, "/", len(train_set))
                batch = ms.get_batch(train_set, [i])

                fname = "{}/prm{}.pkl".format(batch["path"][0],
                                              batch["name"][0])
                points = model.get_points(batch)
                ms.save_pkl(fname, points)
            import ipdb
            ipdb.set_trace()  # breakpoint 679ce152 //

            # train_set, _ = au.load_trainval(main_dict)
            # model = ms.load_best_model(main_dict)
            # for i in range(len(train_set)):
            #   print(i, "/", len(train_set))
            #   batch = ms.get_batch(train_set, [i])
            #   fname = train_set.path + "/gam_{}.pkl".format(batch["index"].item())
            #   points = model.get_points(batch)
            #   ms.save_pkl(fname, points)

        # if mode == "pascal_annList":
        #   data_utils.pascal2lcfcn_points(main_dict)
        if mode == "upperboundmasks":
            import ipdb
            ipdb.set_trace()  # breakpoint 02fac8ce //

            results = au.test_upperboundmasks(main_dict, reset=args.reset)
            print(pd.DataFrame(results))

        if mode == "model":

            results = au.test_model(main_dict, reset=args.reset)
            print(pd.DataFrame(results))

        if mode == "upperbound":
            results = au.test_upperbound(main_dict, reset=args.reset)

            print(pd.DataFrame(results))

        if mode == "MUCov":
            gtAnnDict = au.load_gtAnnDict(main_dict, reset=args.reset)

            # model = ms.load_best_model(main_dict)
            fname = main_dict["path_save"] + "/pred_annList.pkl"
            if not os.path.exists(fname):
                _, val_set = au.load_trainval(main_dict)
                model = ms.load_best_model(main_dict)
                pred_annList = au.dataset2annList(model,
                                                  val_set,
                                                  predict_method="BestDice",
                                                  n_val=None)
                ms.save_pkl(fname, pred_annList)

            else:
                pred_annList = ms.load_pkl(fname)
            import ipdb
            ipdb.set_trace()  # breakpoint 527a7f36 //
            pred_annList = au.load_predAnnList(main_dict,
                                               predict_method="BestObjectness")
            # 0.31 best objectness pred_annList =
            # 0.3482122335421256
            # au.get_MUCov(gtAnnDict, pred_annList)
            au.get_SBD(gtAnnDict, pred_annList)

        if mode == "dic_sbd":
            import ipdb
            ipdb.set_trace()  # breakpoint 4af08a17 //

        if mode == "point_mask":
            from datasets import base_dataset

            import ipdb
            ipdb.set_trace()  # breakpoint 7fd55e0c //
            _, val_set = ms.load_trainval(main_dict)
            batch = ms.get_batch(val_set, [1])
            model = ms.load_best_model(main_dict)
            pred_dict = model.LCFCN.predict(batch)
            # ms.pretty_vis(batch["images"], base_dataset.batch2annList(batch))
            ms.images(ms.pretty_vis(
                batch["images"],
                model.LCFCN.predict(batch,
                                    predict_method="original")["annList"]),
                      win="blobs")
            ms.images(ms.pretty_vis(batch["images"],
                                    base_dataset.batch2annList(batch)),
                      win="erww")
            ms.images(batch["images"],
                      batch["points"],
                      denorm=1,
                      enlarge=1,
                      win="e21e")
            import ipdb
            ipdb.set_trace()  # breakpoint ab9240f0 //

        if mode == "lcfcn_output":
            import ipdb
            ipdb.set_trace()  # breakpoint 7fd55e0c //

            gtAnnDict = au.load_gtAnnDict(main_dict, reset=args.reset)

        if mode == "load_gtAnnDict":
            _, val_set = au.load_trainval(main_dict)
            gtAnnDict = au.load_gtAnnDict(val_set)

            # gtAnnClass = COCO(gtAnnDict)
            # au.assert_gtAnnDict(main_dict, reset=None)
            # _,val_set = au.load_trainval(main_dict)
            # annList_path = val_set.annList_path

            # fname_dummy = annList_path.replace(".json","_best.json")
            # predAnnDict = ms.load_json(fname_dummy)
            import ipdb
            ipdb.set_trace()  # breakpoint 100bfe1b //
            pred_annList = ms.load_pkl(main_dict["path_best_annList"])
            # model = ms.load_best_model(main_dict)
            _, val_set = au.load_trainval(main_dict)
            batch = ms.get_batch(val_set, [1])

            import ipdb
            ipdb.set_trace()  # breakpoint 2310bb33 //
            model = ms.load_best_model(main_dict)
            pred_dict = model.predict(batch, "BestDice", "mcg")
            ms.images(batch["images"],
                      au.annList2mask(pred_dict["annList"])["mask"],
                      denorm=1)
            # pointList2UpperBoundMCG
            pred_annList = au.load_predAnnList(main_dict,
                                               predict_method="BestDice",
                                               proposal_type="mcg",
                                               reset="reset")
            # annList = au.pointList2UpperBoundMCG(batch["lcfcn_pointList"], batch)["annList"]
            ms.images(batch["images"],
                      au.annList2mask(annList)["mask"],
                      denorm=1)
            pred_annList = au.load_BestMCG(main_dict, reset="reset")
            # pred_annList = au.dataset2annList(model, val_set,
            #                   predict_method="BestDice",
            #                   n_val=None)
            au.get_perSizeResults(gtAnnDict, pred_annList)

        if mode == "vis":
            _, val_set = au.load_trainval(main_dict)
            batch = ms.get_batch(val_set, [3])

            import ipdb
            ipdb.set_trace()  # breakpoint 05e6ef16 //

            vis.visBaselines(batch)

            model = ms.load_best_model(main_dict)
            vis.visBlobs(model, batch)

        if mode == "qual":
            model = ms.load_best_model(main_dict)
            _, val_set = au.load_trainval(main_dict)
            path = "/mnt/home/issam/Summaries/{}_{}".format(
                dataset_name, model_name)
            try:
                ms.remove_dir(path)
            except:
                pass
            n_images = len(val_set)
            base = "{}_{}".format(dataset_name, model_name)
            for i in range(50):
                print(i, "/10", "- ", base)
                index = np.random.randint(0, n_images)
                batch = ms.get_batch(val_set, [index])
                if len(batch["lcfcn_pointList"]) == 0:
                    continue
                image = vis.visBlobs(model, batch, return_image=True)

                # image_baselines = vis.visBaselines(batch, return_image=True)
                # imgAll = np.concatenate([image, image_baselines], axis=1)

                fname = path + "/{}_{}.png".format(i, base)
                ms.create_dirs(fname)
                ms.imsave(fname, image)

        if mode == "test_baselines":
            import ipdb
            ipdb.set_trace()  # breakpoint b51c5b1f //
            results = au.test_baselines(main_dict, reset=args.reset)
            print(pd.DataFrame(results))

        if mode == "test_best":
            au.test_best(main_dict)

        if mode == "qualitative":
            au.qualitative(main_dict)

        if mode == "figure1":
            from PIL import Image
            from addons import transforms
            model = ms.load_best_model(main_dict)
            _, val_set = au.load_trainval(main_dict)
            # proposals_path = "/mnt/datasets/public/issam/Cityscapes/demoVideo/leftImg8bit/demoVideo/ProposalsSharp/"
            # vidList = glob("/mnt/datasets/public/issam/Cityscapes/demoVideo/leftImg8bit/demoVideo/stuttgart_01/*")
            # vidList.sort()

            # pretty_image = ms.visPretty(model, batch = ms.get_batch(val_set, [i]), with_void=1, win="with_void")
            batch = ms.get_batch(val_set, [68])
            bestdice = ms.visPretty(model,
                                    batch=batch,
                                    with_void=0,
                                    win="no_void")
            blobs = ms.visPretty(model,
                                 batch=batch,
                                 predict_method="blobs",
                                 with_void=0,
                                 win="no_void")

            ms.images(bestdice, win="BestDice")
            ms.images(blobs, win="Blobs")
            ms.images(batch["images"], denorm=1, win="Image")
            ms.images(batch["images"],
                      batch["points"],
                      enlarge=1,
                      denorm=1,
                      win="Points")
            import ipdb
            ipdb.set_trace()  # breakpoint cf4bb3d3 //

        if mode == "video2":
            from PIL import Image
            from addons import transforms
            model = ms.load_best_model(main_dict)
            _, val_set = au.load_trainval(main_dict)
            # proposals_path = "/mnt/datasets/public/issam/Cityscapes/demoVideo/leftImg8bit/demoVideo/ProposalsSharp/"
            # vidList = glob("/mnt/datasets/public/issam/Cityscapes/demoVideo/leftImg8bit/demoVideo/stuttgart_01/*")
            # vidList.sort()
            index = 0
            for i in range(len(val_set)):

                # pretty_image = ms.visPretty(model, batch = ms.get_batch(val_set, [i]), with_void=1, win="with_void")
                batch = ms.get_batch(val_set, [i])
                pretty_image = ms.visPretty(model,
                                            batch=batch,
                                            with_void=0,
                                            win="no_void")
                # pred_dict = model.predict(batch, predict_method="BestDice")
                path_summary = main_dict["path_summary"]
                ms.create_dirs(path_summary + "/tmp")
                ms.imsave(
                    path_summary + "vid_mask_{}.png".format(index),
                    ms.get_image(batch["images"],
                                 batch["points"],
                                 enlarge=1,
                                 denorm=1))
                index += 1
                ms.imsave(path_summary + "vid_mask_{}.png".format(index),
                          pretty_image)
                index += 1
                # ms.imsave(path_summary+"vid1_full_{}.png".format(i), ms.get_image(img, pred_dict["blobs"], denorm=1))
                print(i, "/", len(val_set))

        if mode == "video":
            from PIL import Image
            from addons import transforms
            model = ms.load_best_model(main_dict)
            # _, val_set = au.load_trainval(main_dict)
            proposals_path = "/mnt/datasets/public/issam/Cityscapes/demoVideo/leftImg8bit/demoVideo/ProposalsSharp/"
            vidList = glob(
                "/mnt/datasets/public/issam/Cityscapes/demoVideo/leftImg8bit/demoVideo/stuttgart_01/*"
            )
            vidList.sort()
            for i, img_path in enumerate(vidList):
                image = Image.open(img_path).convert('RGB')
                image = image.resize((1200, 600), Image.BILINEAR)
                img, _ = transforms.Tr_WTP_NoFlip()([image, image])

                pred_dict = model.predict(
                    {
                        "images": img[None],
                        "split": ["test"],
                        "resized": torch.FloatTensor([1]),
                        "name": [ms.extract_fname(img_path)],
                        "proposals_path": [proposals_path]
                    },
                    predict_method="BestDice")
                path_summary = main_dict["path_summary"]
                ms.create_dirs(path_summary + "/tmp")
                ms.imsave(path_summary + "vid1_mask_{}.png".format(i),
                          ms.get_image(pred_dict["blobs"]))
                ms.imsave(path_summary + "vid1_full_{}.png".format(i),
                          ms.get_image(img, pred_dict["blobs"], denorm=1))
                print(i, "/", len(vidList))

        if mode == "5_eval_BestDice":
            gtAnnDict = au.load_gtAnnDict(main_dict)
            gtAnnClass = COCO(gtAnnDict)
            results = au.assert_gtAnnDict(main_dict, reset=None)

        if mode == "cp_annList":
            ms.dataset2cocoformat(dataset_name="CityScapes")

        if mode == "pascal2lcfcn_points":
            data_utils.pascal2lcfcn_points(main_dict)

        if mode == "cp2lcfcn_points":
            data_utils.cp2lcfcn_points(main_dict)

        if mode == "train":

            train.main(main_dict)
            import ipdb
            ipdb.set_trace()  # breakpoint a5d091b9 //

        if mode == "train_only":

            train.main(main_dict, train_only=True)
            import ipdb
            ipdb.set_trace()  # breakpoint a5d091b9 //

        if mode == "sharpmask2psfcn":
            for split in ["train", "val"]:
                root = "/mnt/datasets/public/issam/COCO2014/ProposalsSharp/"
                path = "{}/sharpmask/{}/jsons/".format(root, split)

                jsons = glob(path + "*.json")
                propDict = {}
                for k, json in enumerate(jsons):
                    print("{}/{}".format(k, len(jsons)))
                    props = ms.load_json(json)
                    for p in props:
                        if p["image_id"] not in propDict:
                            propDict[p["image_id"]] = []
                        propDict[p["image_id"]] += [p]

                for k in propDict.keys():
                    fname = "{}/{}.json".format(root, k)
                    ms.save_json(fname, propDict[k])

        if mode == "cp2coco":
            import ipdb
            ipdb.set_trace()  # breakpoint f2eb9e70 //
            dataset2cocoformat.cityscapes2cocoformat(main_dict)
            # train.main(main_dict)
            import ipdb
            ipdb.set_trace()  # breakpoint a5d091b9 //

        if mode == "train_lcfcn":
            train_lcfcn.main(main_dict)
            import ipdb
            ipdb.set_trace()  # breakpoint a5d091b9 //

        if mode == "summary":

            try:
                history = ms.load_history(main_dict)

                # if predictList_str == "MAE":
                #   results[key] = "{}/{}: {:.2f}".format(history["best_model"]["epoch"],
                #                                                           history["epoch"],
                #                                                           history["best_model"][metric_name])

                # else:
                val_dict = history["val"][-1]
                val_dict = history["best_model"]
                iou25 = val_dict["0.25"]
                iou5 = val_dict["0.5"]
                iou75 = val_dict["0.75"]
                results[key] = "{}/{}: {:.1f} - {:.1f} - {:.1f}".format(
                    val_dict["epoch"], history["epoch"], iou25 * 100,
                    iou5 * 100, iou75 * 100)
                # if history["val"][-1]["epoch"] != history["epoch"]:
                #   results[key] += " | Val {}".format(history["epoch"])
                try:
                    results[key] += " | {}/{}".format(
                        len(history["trained_batch_names"]),
                        history["train"][-1]["n_samples"])
                except:
                    pass
            except:
                pass
        if mode == "vals":

            history = ms.load_history(main_dict)

            for i in range(1, len(main_dict["predictList"]) + 1):
                if len(history['val']) == 0:
                    res = "NaN"
                    continue
                else:
                    res = history["val"][-i]

                map50 = res["map50"]
                map75 = res["map75"]

                # if map75 < 1e-3:
                #   continue

                string = "{} - {} - map50: {:.2f} - map75: {:.2f}".format(
                    res["epoch"], res["predict_name"], map50, map75)

                key_tmp = list(key).copy()
                key_tmp[1] += " {} - {}".format(metric_name,
                                                res["predict_name"])
                results[tuple(key_tmp)] = string

            # print("map75", pd.DataFrame(history["val"])["map75"].max())
            # df = pd.DataFrame(history["vals"][:20])["water_loss_B"]
            # print(df)
    try:
        print(ms.dict2frame(results))
    except:
        print("Results not printed...")