def inception_v3(pretrained=False, model_root=None, **kwargs): if pretrained: if 'transform_input' not in kwargs: kwargs['transform_input'] = True model = Inception3(**kwargs) misc.load_state_dict(model, model_urls['inception_v3_google'], model_root) return model return Inception3(**kwargs)
def resnet152(pretrained=False, model_root=None, **kwargs): model = ResNet(Bottleneck, [3, 8, 36, 3], **kwargs) if pretrained: misc.load_state_dict(model, model_urls['resnet152'], model_root) return model
def resnet34(pretrained=False, model_root=None, **kwargs): model = ResNet(BasicBlock, [3, 4, 6, 3], **kwargs) if pretrained: misc.load_state_dict(model, model_urls['resnet34'], model_root) return model
def sphere64a(pretrained=False, model_root=None, stage = 0): model=SphereNet(BasicBlock, [3,8,16,3], stage) if pretrained: misc.load_state_dict(model, model_root) return model
# compute the transformation between the current source and nearest destination points T, R, t = best_fit_transform(vertices2, vertices1[indices]) # update the current source vertices2 = (np.dot(R, vertices2.T)).T + t # check error mean_error = np.sqrt(np.mean(distances ** 2)) if np.abs(prev_error - mean_error) < 0.00001: break prev_error = mean_error # print(mean_error) return mean_error if __name__ == "__main__": print("loading model...") dict_file = "/home/jdq/model/dict.cl_382500.cl" model = net.sphere64a(pretrained=True, model_root=dict_file) model = model.cuda() print("Loading...\n") state = torch.load(dict_file) state_dict = state misc.load_state_dict(model, dict_file) print("evaluting...") e = EvalToolBox() e.get_micc_rmse(model) # evalMICC()