示例#1
0
    def _Crop(self, c, cnear):
        """Go from cnear in the direction of (c - cnear) until either
        reaching c or one of the robot reaching its goal.
        
        Returns
        -------
        cnew : Config
        cropped : bool
            True if some robots have reached their goals, else False.

        """
        dc = (c - cnear) / Norm(c - cnear)  # unit vector from cnear to c

        cropped = False  # indicates if any DOF has been cropped
        reachingIndex = None  # the index of the robot which reaches its goal first
        minMult = np.infty
        # Check if any robot has reached its goal
        for i in c.activeIndices:
            if c[i] >= self.configGoal[i]:
                if abs(dc[i]) < EPSILON:
                    continue

                cropped = True
                k = (self.configGoal[i] - cnear[i]) / dc[i]
                if k < minMult:
                    minMult = k
                    reachingIndex = i

        activeIndices = c.activeIndices
        if not cropped:
            cnew = Config(c, activeIndices)
        else:
            activeIndices.remove(reachingIndex)
            cnew = Config(cnear + dc * minMult, sorted(activeIndices))
        return cnew, cropped
示例#2
0
 def test_get_solutions_json(self):
     with self.unpack_named_src('problem.json') as conf_file:
         cfg = Config()
         self.assertCountEqual(cfg.get_solutions(),
                               [('ks_fast', 'solutions/floors_ks_fast.cpp'),
                                ('floors_ks.cpp', 'solutions/floors_ks.cpp'),
                                ('floors_ks_slow.cpp', 'solutions/floors_ks_slow.cpp')])
示例#3
0
 def test_get_solutions_ini(self):
     with self.unpack_named_src('problem.conf') as conf_file:
         cfg = Config()
         self.assertCountEqual(cfg.get_solutions(),
                               [('ks_py', 'solutions/floors_ks.py'),
                                ('ks', 'solutions/floors_ks.cpp'),
                                ('ks_slow', 'solutions/floors_ks_slow.cpp')])
示例#4
0
    def _Initialize(self):
        """
        """
        self.nrobots = len(self.cd.robots)

        configStart = Config([0.] * self.nrobots)
        self.treeStart = Tree(Vertex(configStart))
        self.currentRoot = configStart
        self.currentActiveIndices = self.currentRoot.activeIndices
        # nearest neighbor computation considers only vertices with
        # their indices greater than _offsetIndex. This is basically a
        # way to removed finished robots.
        self._offsetIndex = 0

        self.configGoal = Config(
            [robot.pathLength for robot in self.cd.robots])
示例#5
0
    def SampleConfig(self):
        """Sample a new configuration (in the coordination diagram). Elements
        at inactive indices are filled with the corresponding elements
        in the goal configuration.

        """
        if self.params.useVirtualBoxes:
            upperBounds = [max(self.configGoal) * self.params.expansionCoeff
                           ] * self.nrobots
        else:
            upperBounds = self.configGoal
        config = Config([
            self._RNG(u, l)
            if i in self.currentActiveIndices else self.configGoal[i]
            for i, (u, l) in enumerate(zip(upperBounds, self.currentRoot))
        ],
                        activeIndices=self.currentActiveIndices)
        return config
示例#6
0
    def Extend(self, crand):
        status = TRAPPED
        nnIndices = self.treeStart.GetKNNIndices(self.params.nn, crand,
                                                 self._offsetIndex)
        # Iterate though the list of nearest neighbors
        for index in nnIndices:
            vnear = self.treeStart[index]
            cnear = vnear.config

            ################################################################################
            # Manage spacial robots
            dc = crand - cnear
            # Robots with velocity constraints
            for indices in vnear.constrainedIndexSets:
                # vmin = min([dc[i] for i in indices])

                # Sometimes, vmin is too little such that robots get
                # stuck. Maybe we need to add some randomness when selecting a
                # value.
                vconstrained = max([dc[i] for i in indices])
                for i in indices:
                    dc[i] = vconstrained

            # Waiting robots
            for i in vnear.waitingIndices:
                dc[i] = 0

            q = [x + y for (x, y) in zip(cnear, dc)]

            crand_new = Config(q, crand.activeIndices)
            ################################################################################

            dist = Distance(cnear, crand_new)
            # Limit the new Config to be within rrtStepsize units from its neighbor
            if dist <= self.params.rrtStepSize:
                cnew = crand_new
            else:
                dc = crand_new - cnear  # direction from cnear to cnew
                if Norm(dc) <= EPSILON:
                    # import IPython; IPython.embed(header="Extend (norm(dc) == 0)")
                    return TERMINATED
                cnew = cnear + dc * (self.params.rrtStepSize / Norm(dc))

            if Norm(cnew - cnear) <= EPSILON:
                # import IPython; IPython.embed(header="Extend (norm(ctest - cnear) == 0)")
                return TERMINATED

            # Check for collisions.
            # Note that vnear is also an input to this collision checking
            # procedure in order for us to be able to update waitingIndices.
            if self.cd.CheckCollisionConfig(cnew, self.currentActiveIndices,
                                            vnear):
                continue
            if self.cd.CheckCollisionSegment(cnear, cnew,
                                             self.currentActiveIndices, vnear):
                continue

            # Add the new vertex to the tree
            vnew = Vertex(cnew)
            self.treeStart.AddVertex(index, vnew)
            status = ADVANCED

            if np.random.random() <= self.params.goalBias:
                # Attempt connection. Note that we use CheckCollisionSegment2 here.
                if not self.cd.CheckCollisionSegment2(
                        cnew, self.configGoal, self.currentActiveIndices):
                    vgoal = Vertex(self.configGoal)
                    self.treeStart.AddVertex(vnew.index, vgoal)
                    status = REACHED
                    return status
            # Check if the newly added vertex is near any conflict zone
            self.CheckAndPreventConflicts()

            return status

        return status
示例#7
0
import sockjs.tornado
from zmq.utils import jsonapi

try:
    from sage.all import gap, gp, maxima, r, singular
    tab_completion = {
        "gap": gap._tab_completion(),
        "gp": gp._tab_completion(),
        "maxima": maxima._tab_completion(),
        "r": r._tab_completion(),
        "singular": singular._tab_completion()
    }
except ImportError:
    tab_completion = {}
from misc import sage_json, Config
config = Config()


class RootHandler(tornado.web.RequestHandler):
    """
    Root URL request handler.
    
    This renders templates/root.html, which optionally inserts
    specified preloaded code during the rendering process.
    
    There are three ways currently supported to specify
    preloading code:
    
    ``<root_url>?c=<code>`` loads 'plaintext' code
    ``<root_url>?z=<base64>`` loads base64-compressed code
    ```<root_url>?q=<uuid>`` loads code from a database based
示例#8
0
    def CheckCollisionConfig(self, config, activeIndices, vnear=None):
        """Check for both virtual and actual collisions.
        """
        inCollision = False
        positions = [
            self.robots[i].Locate(config[i])[0] for i in activeIndices
        ]

        # Check for virtual collisions (trapped in deadlocks).
        a = self._a
        b = self._b
        for (iconflict, conflict) in enumerate(self.conflicts):
            if conflict.type != ConflictType.DEADLOCK:
                continue

            if not set(conflict.indices).issubset(set(activeIndices)):
                continue
            indices = conflict.indices

            svect = Config([config[rindex] for rindex in indices])
            # svect_start = Config([conflict.intervals[rindex][0] - a
            #                       for rindex in indices])
            # svect_end = Config([conflict.intervals[rindex][1] + b
            #                     for rindex in indices])
            svect_start = Config(
                [conflict.intervals[rindex][0] for rindex in indices])
            svect_end = Config(
                [conflict.intervals[rindex][1] for rindex in indices])

            if svect.Dominates(svect_start) and svect_end.Dominates(svect):
                msg = "    Config in deadlock {0}: Robot {1}".format\
                      (iconflict, indices[0])
                for index in indices[1:]:
                    msg += " & Robot {0}".format(index)
                log.debug(msg)
                inCollision = True
                if vnear is not None:
                    log.debug("    vnear.index = {0}".format(vnear.index))
                return inCollision

        # Check for actual collisions
        for i in xrange(len(activeIndices)):
            index1 = activeIndices[i]
            for j in xrange(i + 1, len(activeIndices)):
                index2 = activeIndices[j]

                diff = positions[i] - positions[j]
                dist = np.sqrt(np.dot(diff, diff))
                if dist <= 2 * self.params.collisionRadius:
                    log.debug("    Config in collision: Robot {0} & Robot {1}".
                              format(index1, index2))
                    if vnear is not None:
                        log.debug("    vnear.index = {0}".format(vnear.index))
                    inCollision = True

                    if vnear is not None:
                        if index1 in vnear.waitingIndices or index2 in vnear.waitingIndices:
                            # If one of the colliding robot is a waiting
                            # robot, the other robot should also wait.
                            if index1 in vnear.waitingIndices:
                                vnear.waitingIndices.append(index2)
                            elif index2 in vnear.waitingIndices:
                                vnear.waitingIndices.append(index1)
                        else:
                            for conflict in self.conflicts:
                                # if conflict.type != ConflictType.SHARED:
                                #     continue

                                # Consider both shared segments and junctions.
                                if conflict.type == ConflictType.DEADLOCK:
                                    continue
                                if (not (index1 in conflict.indices
                                         and index2 in conflict.indices)):
                                    continue
                                s1_start, s1_end = conflict.intervals[index1]
                                s2_start, s2_end = conflict.intervals[index2]
                                s1 = config[index1]
                                s2 = config[index2]
                                rem1 = s1_end - s1
                                rem2 = s2_end - s2

                                # The robot that is behind the other shall wait.
                                if rem1 > rem2:
                                    vnear.waitingIndices.append(index1)
                                else:
                                    vnear.waitingIndices.append(index2)

                        vnear.waitingIndices = sorted(
                            list(set(vnear.waitingIndices)))
                    return inCollision

        return inCollision
示例#9
0
from misc import Offer, Search, Offerbase, Config
import misc
import linkedin, pracujpl
import csv
import subprocess
import os
import concurrent.futures

#Create new offers list
newoffers = []
newoffers_pracujpl = []
newoffers_linkedin = []

#Read config file
config = Config('config.json')

#Create separate threads for linkedin and pracuj.pl
with concurrent.futures.ThreadPoolExecutor() as executor:
    linkedin = executor.submit(linkedin.linkedin_search, config)
    pracuj = executor.submit(pracujpl.pracujpl_search, config)
    newoffers_linkedin = linkedin.result()
    newoffers_pracujpl = pracuj.result()

newoffers = newoffers_pracujpl + newoffers_linkedin

#Update log
db = Offerbase('offers.db')
for task in config.searches:
    db.update_log(Search(task['jobtitle'], task['location']))
db.close()
示例#10
0
    def CheckAndPreventConflicts(self):
        """Check if the newly added config is near any conflict. If so, apply the
        conflict prevention policy.

        """
        v = self.treeStart[-1]  # the newly added vertex
        c = v.config

        waitingIndices = []
        constrainedIndexSets = []
        a = self.cd._a
        b = self.cd._b
        d = self.params.preventionDistance

        # When there is (seems to be) freedom to choose which robot to
        # wait, we need to be more careful since the choice we make
        # can affect the problem. The order in which we iterate
        # through the conflict also affects the problem.

        # decisionSets is a list of sublists. Each sublist contains
        # robot indices among which we can choose them to
        # wait. Suppose a sublist is [rindex1, rindex2]. There might
        # be some future conflict that forces, e.g., rindex1 to
        # wait. Then we remove the sublist.
        decisionSets = []

        # movingIndices is a list of sublists. Each sublist contains robot
        # indices among which at least one robot MUST BE MOVING. (Otherwise, a
        # configuration will be stuck in a deadlock.)
        movingIndices = []

        for conflict in self.cd.conflicts:

            if conflict.type == ConflictType.DEADLOCK:
                # indices store active indices that are related to this deadlock.
                if not set(conflict.indices).issubset(
                        set(self.currentActiveIndices)):
                    continue
                indices = sorted(conflict.indices)
                # indices = sorted(list(set(conflict.indices) & set(self.currentActiveIndices)))
                # if len(indices) < 2:
                #     continue

                svect = Config([c[rindex] for rindex in indices])
                # svect_inner = Config([conflict.intervals[rindex][0] - a
                #                       for rindex in indices])
                svect_inner = Config(
                    [conflict.intervals[rindex][0] for rindex in indices])

                svect_outer = Config([s - d for s in svect_inner])
                # svect_max   = Config([conflict.intervals[rindex][1] + b
                #                       for rindex in indices])
                svect_max = Config(
                    [conflict.intervals[rindex][1] for rindex in indices])

                if not (svect.Dominates(svect_outer)
                        and svect_max.Dominates(svect)):
                    # This config is not near this deadlock obstacle
                    continue

                if svect_inner.Dominates(svect):
                    # All robots that are related to this deadlock have not
                    # entered the deadlock yet.
                    intersect = list(set(indices) & set(waitingIndices))
                    if len(intersect) > 0:
                        # At least one robot is waiting so that's fine.
                        continue
                    else:
                        # In this case, we will decide later which one to wait.
                        decisionSets.append(indices)
                else:
                    # Some robots have already entered the deadlock. See first
                    # which robots have already entered or not entered.
                    diff = svect - svect_inner
                    decisionSet = []  # this list keeps the indices of robots
                    # outside the deadlock

                    for (ds, index) in zip(diff, indices):
                        if ds < 0:
                            # This robot has not entered the deadlock.
                            decisionSet.append(index)
                    intersect = list(set(decisionSet) & set(waitingIndices))
                    if len(intersect) > 0:
                        # At least one robot outside the deadlock is already
                        # waiting. Do nothing here.
                        continue
                    else:
                        if len(decisionSet) == 1:
                            # # If we reach this case, the robot with index
                            # # decisionSet[0] is forced to wait since it is THE
                            # # ONLY ONE that has not entered the deadlock yet. We
                            # # also need to make sure that at least one of the
                            # # other robots MUST BE moving.
                            # waitingIndices.append(decisionSet[0])
                            # if len(indices) > 2:
                            #     # We may need to examine this case more closely.
                            #     # IPython.embed(header="len(conflict.indices) > 2")
                            #     moving = list(set(indices) - set(decisionSet))
                            #     movingIndices.append(moving)
                            # else:
                            #     # index is the index of the robot that must be moving.
                            #     index = list(set(indices) - set(decisionSet))[0]
                            #     for decisionSet in decisionSets:
                            #         # Remove any appearance of index in decision sets.
                            #         try:
                            #             decisionSet.remove(index)
                            #         except:
                            #             pass

                            # newDecisionSets = []
                            # for decisionSet in decisionSets:
                            #     if len(decisionSet) == 0:
                            #         # This should not be the case
                            #         raise ValueError
                            #     elif len(decisionSet) == 1:
                            #         # The decision has been made.
                            #         waitingIndices.append(decisionSet[0])
                            #     else:
                            #         intersect = list(set(waitingIndices) & set(decisionSet))
                            #         if len(intersect) > 0:
                            #             continue
                            #         else:
                            #             newDecisionSets.append(decisionSet)
                            # decisionSets = newDecisionSets
                            if decisionSet[0] not in waitingIndices:
                                waitingIndices.append(decisionSet[0])

                        else:
                            # In this case, we decide later
                            decisionSets.append(decisionSet)

            else:
                # Elementary conflict (shared segment or junction)
                rindex1, rindex2 = conflict.indices
                if ((rindex1 not in self.currentActiveIndices)
                        or (rindex2 not in self.currentActiveIndices)):
                    # At least one robot is inactive: this conflict is not relevant
                    continue
                s1 = c[rindex1]
                s2 = c[rindex2]
                s1_start, s1_end = conflict.intervals[rindex1]
                s2_start, s2_end = conflict.intervals[rindex2]

                if conflict.type == ConflictType.SHARED:
                    # SHARED SEGMENT
                    # if ((s1_start - a - d <= s1 <= s1_start) and
                    #     (s2_start - a - d <= s2 <= s2_start - a)):
                    #     # Both robots have not entered the shared segment
                    #     # yet. So we keep them as candidates.
                    #     decisionSet = [rindex1, rindex2]
                    #     decisionSets.append(decisionSet)
                    # elif ((s1_start - a - d <= s1 <= s1_start - a) and
                    #       (s2_start - a <= s2 <= s2_start)):
                    #     # Both robots have not entered the shared segment
                    #     # yet. So we keep them as candidates.
                    #     decisionSet = [rindex1, rindex2]
                    #     decisionSets.append(decisionSet)
                    if ((s1_start - d <= s1 <= s1_start)
                            and (s2_start - d <= s2 <= s2_start)):
                        # Both robots have not entered the shared segment
                        # yet. So we keep them as candidates.
                        decisionSet = [rindex1, rindex2]
                        decisionSets.append(decisionSet)
                    elif ((s1_start - d <= s1 <= s1_start + a)
                          and (s2_start - d <= s2 <= s2_start + a)):
                        if s1 >= s1_start:
                            waitingIndices.append(rindex2)
                        else:
                            waitingIndices.append(rindex1)
                    # elif ((s1_start - a - d <= s1 <= s1_end + a) and
                    #       (s2_start - a - d <= s2 <= s2_end + a)):
                    elif ((s1_start - d <= s1 <= s1_end)
                          and (s2_start - d <= s2 <= s2_end)):
                        # This configuration is inside a velocity constrained
                        # region. (Both robots are inside a shared segment so
                        # they should move at the same speed.)
                        indices = [rindex1, rindex2]

                        # Now we need to check if robot1/robot2 is already part
                        # of any other shared segment conflict.
                        appeared = False
                        for i in xrange(len(constrainedIndexSets)):
                            if ((rindex1 in constrainedIndexSets[i])
                                    or (rindex2 in constrainedIndexSets[i])):
                                newIndices = list(
                                    set(constrainedIndexSets[i] + indices))
                                constrainedIndexSets[i] = newIndices
                                appeared = True
                                break

                        if not appeared:
                            constrainedIndexSets.append(indices)
                else:
                    # JUNCTION
                    # if ((s1_start - d <= s1 <= s1_end) and
                    #     (s2_start - d <= s2 <= s2_end)):
                    #     # Both robots almost reach the junction.
                    #     decisionSet = [rindex1, rindex2]
                    #     decisionSets.append(decisionSet)
                    if ((s1_start - d <= s1 <= s1_start)
                            and (s2_start - d <= s2 <= s2_start)):
                        # Both robots are about to cross this junction.
                        decisionSet = [rindex1, rindex2]
                        decisionSets.append(decisionSet)

                    elif ((s1_start - d <= s1 <= s1_end)
                          and (s2_start - d <= s2 <= s2_end)):
                        rem1 = s1_end - s1
                        rem2 = s2_end - s2

                        # The robot that is behind the other shall wait.
                        if rem1 > rem2:
                            waitingIndices.append(rindex1)
                        else:
                            waitingIndices.append(rindex2)

        # Now we have already iterated through all conflicts.

        # Manage the pending decisions.
        newDecisionSets = []
        for decisionSet in decisionSets:
            intersect = list(set(waitingIndices) & set(decisionSet))
            if len(intersect) > 0:
                continue
            else:
                newDecisionSets.append(decisionSet)
        decisionSets = newDecisionSets

        if len(decisionSets) > 0:
            appearance = dict()
            for decisionSet in decisionSets:
                for el in decisionSet:
                    if el not in appearance:
                        appearance[el] = 1
                    else:
                        appearance[el] += 1

            # Sort the dictionary `appearance` by its values (descending order).
            sorted_appearance = sorted(appearance.items(), key=itemgetter(1))

            # Idea: indices that appear most often should be waiting so as to
            # minimize the waiting robots.
            for item in sorted_appearance:
                index, _ = item
                newDecisionSets = []
                for decisionSet in decisionSets:
                    try:
                        decisionSet.remove(index)
                        waitingIndices.append(index)
                    except:
                        pass
                    if len(decisionSet) > 1:
                        newDecisionSets.append(decisionSet)
                decisionSets = newDecisionSets
                if len(decisionSets) == 0:
                    break
        if len(decisionSets) > 0:
            # All pending decisions should have already been made.
            raise ValueError

        for movingSet in movingIndices:
            if len(list(set(movingSet) - set(waitingIndices))) == 0:
                import IPython
                IPython.embed(header="error with moving indices")

        # Manage constrained index sets

        # Idea: if there are three robot in the shared segment but the one
        # behind is waiting, that robot should not affect the other two. If the
        # one waiting is not the one behind, the moving one will eventually
        # collide with it and be made waiting anyway.
        waitingSet = set(waitingIndices)
        newconstrainedset = []
        for constrainedset in constrainedIndexSets:
            constrainedset = list(set(constrainedset) - waitingSet)
            if len(constrainedset) > 1:
                newconstrainedset.append(constrainedset)

        v.waitingIndices = sorted(list(set(waitingIndices)))
        v.constrainedIndexSets = newconstrainedset  # constrainedIndexSets
        return
示例#11
0
import trusted_kernel_manager
from misc import assert_is, assert_equal, assert_in, assert_not_in, assert_raises, assert_regexp_matches, assert_is_instance, assert_is_not_none, assert_greater, assert_len, assert_uuid, capture_output, Config
import random
import os
import sys
import ast
import zmq
from IPython.zmq.session import Session
from contextlib import contextmanager
import time
import re
import config_default as conf
sage = conf.sage
configg = Config()
d = configg.get_default_config("_default_config")

from IPython.testing.decorators import skip

def test_init():
    tmkm = trusted_kernel_manager.TrustedMultiKernelManager()
    assert_len(tmkm._kernels.keys(), 0)
    assert_len(tmkm._comps.keys(), 0)
    assert_len(tmkm._clients.keys(), 0)
    assert_is(hasattr(tmkm, "context"), True)
  
def test_init_parameters():
    tmkm = trusted_kernel_manager.TrustedMultiKernelManager(default_computer_config = {"a": "b"}, kernel_timeout = 3.14)
    assert_equal(tmkm.default_computer_config, {"a": "b"})
    assert_equal(tmkm.kernel_timeout, 3.14)

    
    capture_output,
    Config,
)
import random
import os
import sys
import ast
import zmq
from IPython.zmq.session import Session
from contextlib import contextmanager
import time
import re
import config_default as conf

sage = conf.sage
configg = Config()
d = configg.get_default_config("_default_config")

from IPython.testing.decorators import skip


def test_init():
    tmkm = trusted_kernel_manager.TrustedMultiKernelManager()
    assert_len(tmkm._kernels.keys(), 0)
    assert_len(tmkm._comps.keys(), 0)
    assert_len(tmkm._clients.keys(), 0)
    assert_is(hasattr(tmkm, "context"), True)


def test_init_parameters():
    tmkm = trusted_kernel_manager.TrustedMultiKernelManager(default_computer_config={"a": "b"}, kernel_timeout=3.14)
示例#13
0
 def test_get_not_existing_problem_param_json(self):
     with self.unpack_named_src('problem.json') as conf_file:
         cfg = Config()
         self.assertIsNone(cfg.get_problem_param('qwerty'))
         with self.assertRaises(KeyError):
             cfg.get_problem_param('qwerty', False)
示例#14
0
 def test_get_bool_problem_param_json(self):
     with self.unpack_named_src('problem.json') as conf_file:
         cfg = Config()
         self.assertFalse(cfg.get_problem_param('use_doall'))
         self.assertFalse(cfg.get_problem_param('qwerty'))
示例#15
0
 def test_get_problem_param_json(self):
     with self.unpack_named_src('problem.json') as conf_file:
         cfg = Config()
         self.assertEqual(cfg.get_problem_param('title', False), '')
         self.assertEqual(cfg.get_problem_param('title'), '')
示例#16
0
 def test_get_main_solution_json(self):
     with self.unpack_named_src('problem.json') as conf_file:
         cfg = Config()
         self.assertEqual(cfg.get_main_solution(), 'solutions/floors_ks.cpp')