示例#1
0
    def train(self, data_loader, stage=1):
        if stage == 1:
            netG, netD, start_epoch = self.load_network_stageI()
        else:
            netG, netD, start_epoch = self.load_network_stageII()

        nz = cfg.Z_DIM
        batch_size = self.batch_size
        noise = Variable(torch.FloatTensor(batch_size, nz))
        fixed_noise = \
            Variable(torch.FloatTensor(batch_size, nz).normal_(0, 1),
                     requires_grad=False)
        real_labels = Variable(torch.FloatTensor(batch_size).fill_(1))
        fake_labels = Variable(torch.FloatTensor(batch_size).fill_(0))
        if cfg.CUDA:
            noise, fixed_noise = noise.cuda(), fixed_noise.cuda()
            real_labels, fake_labels = real_labels.cuda(), fake_labels.cuda()

        generator_lr = cfg.TRAIN.GENERATOR_LR
        discriminator_lr = cfg.TRAIN.DISCRIMINATOR_LR
        lr_decay_step = cfg.TRAIN.LR_DECAY_EPOCH
        optimizerG, optimizerD = self.load_optimizers(netG, netD)

        count = 0
        for epoch in range(start_epoch, self.max_epoch):
            start_t = time.time()
            if epoch % lr_decay_step == 0 and epoch > 0:
                generator_lr *= 0.5
                for param_group in optimizerG.param_groups:
                    param_group['lr'] = generator_lr
                discriminator_lr *= 0.5
                for param_group in optimizerD.param_groups:
                    param_group['lr'] = discriminator_lr

            for i, data in enumerate(data_loader, 0):
                ######################################################
                # (1) Prepare training data
                ######################################################
                real_img_cpu, txt_embedding = data
                real_imgs = Variable(real_img_cpu)
                txt_embedding = Variable(txt_embedding)
                if cfg.CUDA:
                    real_imgs = real_imgs.cuda()
                    txt_embedding = txt_embedding.float().cuda()

                ######################################################
                # (2) Generate fake images
                ######################################################
                noise.data.normal_(0, 1)
                inputs = (txt_embedding, noise)
                _, fake_imgs, mu, logvar = \
                    nn.parallel.data_parallel(netG, inputs, self.gpus)

                ######################################################
                # (3) Update D network
                ######################################################
                netD.zero_grad()
                errD, errD_real, errD_wrong, errD_fake = \
                    compute_discriminator_loss(netD, real_imgs, fake_imgs,
                                               real_labels, fake_labels,
                                               mu, self.gpus)
                errD.backward()
                optimizerD.step()
                ######################################################
                # (2) Update G network
                ######################################################
                netG.zero_grad()
                errG = compute_generator_loss(netD, fake_imgs, real_labels, mu,
                                              self.gpus)
                kl_loss = KL_loss(mu, logvar)
                errG_total = errG + kl_loss * cfg.TRAIN.COEFF.KL
                errG_total.backward()
                optimizerG.step()

                count = count + 1
                if i % 100 == 0:
                    summary_D = summary.scalar('D_loss', errD.item())
                    summary_D_r = summary.scalar('D_loss_real', errD_real)
                    summary_D_w = summary.scalar('D_loss_wrong', errD_wrong)
                    summary_D_f = summary.scalar('D_loss_fake', errD_fake)
                    summary_G = summary.scalar('G_loss', errG.item())
                    summary_KL = summary.scalar('KL_loss', kl_loss.item())

                    self.summary_writer.add_summary(summary_D, count)
                    self.summary_writer.add_summary(summary_D_r, count)
                    self.summary_writer.add_summary(summary_D_w, count)
                    self.summary_writer.add_summary(summary_D_f, count)
                    self.summary_writer.add_summary(summary_G, count)
                    self.summary_writer.add_summary(summary_KL, count)

                    # save the image result for each epoch
                    inputs = (txt_embedding, fixed_noise)
                    lr_fake, fake, _, _ = \
                        nn.parallel.data_parallel(netG, inputs, self.gpus)
                    save_img_results(real_img_cpu, fake, epoch, self.image_dir)
                    if lr_fake is not None:
                        save_img_results(None, lr_fake, epoch, self.image_dir)
            end_t = time.time()
            print(
                '''[%d/%d][%d/%d] Loss_D: %.4f Loss_G: %.4f Loss_KL: %.4f
                     Loss_real: %.4f Loss_wrong:%.4f Loss_fake %.4f
                     Total Time: %.2fsec
                  ''' %
                (epoch, self.max_epoch, i, len(data_loader), errD.item(),
                 errG.item(), kl_loss.item(), errD_real, errD_wrong, errD_fake,
                 (end_t - start_t)))
            if epoch % self.snapshot_interval == 0:
                save_model(netG, netD, epoch, self.model_dir)
                save_optimizer(optimizerG, optimizerD, self.model_dir)

        save_model(netG, netD, self.max_epoch, self.model_dir)
        self.summary_writer.close()
示例#2
0
    def train(self, data_loader, stage=1):
        if stage == 1:
            netG, netD = self.load_network_stageI()
        else:
            netG, netD = self.load_network_stageII()

        nz = cfg.Z_DIM  # 100
        batch_size = self.batch_size
        noise = Variable(torch.FloatTensor(batch_size, nz))
        fixed_noise = \
            Variable(torch.FloatTensor(batch_size, nz).normal_(0, 1),
                     volatile=True)
        real_labels = Variable(torch.FloatTensor(batch_size).fill_(1))
        fake_labels = Variable(torch.FloatTensor(batch_size).fill_(0))
        if cfg.CUDA:
            noise, fixed_noise = noise.cuda(), fixed_noise.cuda()
            real_labels, fake_labels = real_labels.cuda(), fake_labels.cuda()

        generator_lr = cfg.TRAIN.GENERATOR_LR
        discriminator_lr = cfg.TRAIN.DISCRIMINATOR_LR
        lr_decay_step = cfg.TRAIN.LR_DECAY_EPOCH
        optimizerD = \
            optim.Adam(netD.parameters(),
                       lr=cfg.TRAIN.DISCRIMINATOR_LR, betas=(0.5, 0.999))
        netG_para = []
        for p in netG.parameters():
            if p.requires_grad:
                netG_para.append(p)
        optimizerG = optim.Adam(netG_para,
                                lr=cfg.TRAIN.GENERATOR_LR,
                                betas=(0.5, 0.999))
        count = 0
        detectron = Detectron()
        for epoch in range(self.max_epoch):
            start_t = time.time()
            if epoch % lr_decay_step == 0 and epoch > 0:
                generator_lr *= 0.5
                for param_group in optimizerG.param_groups:
                    param_group['lr'] = generator_lr
                discriminator_lr *= 0.5
                for param_group in optimizerD.param_groups:
                    param_group['lr'] = discriminator_lr
            #print('check 0')
            for i, data in enumerate(data_loader):
                ######################################################
                # (1) Prepare training data
                ######################################################
                #print('check 1')
                real_img_cpu, txt_embedding, caption = data
                caption = np.moveaxis(np.array(caption), 1, 0)

                #print('check 2')

                real_imgs = Variable(real_img_cpu)
                txt_embedding = Variable(txt_embedding)
                #print('check 3')
                if cfg.CUDA:
                    real_imgs = real_imgs.cuda()
                    txt_embedding = txt_embedding.cuda()

                #######################################################
                # (2) Generate fake images
                ######################################################

                #print(real_imgs.size())

                noise.data.normal_(0, 1)
                inputs = (txt_embedding, noise)
                _, fake_imgs, mu, logvar = \
                    nn.parallel.data_parallel(netG, inputs, self.gpus)
                ############################
                # (3) Update D network
                ###########################
                netD.zero_grad()
                errD, errD_real, errD_wrong, errD_fake = \
                    compute_discriminator_loss(netD, real_imgs, fake_imgs,
                                               real_labels, fake_labels,
                                               mu, self.gpus)
                errD.backward()
                optimizerD.step()
                ############################
                # (2) Update G network
                ###########################
                netG.zero_grad()
                errG = compute_generator_loss(netD, fake_imgs, real_labels, mu,
                                              self.gpus)
                kl_loss = KL_loss(mu, logvar)

                fake_img = fake_imgs.cpu().detach().numpy()
                #print(fake_img.shape)

                det_obj_list = detectron.get_labels(fake_img)

                fake_l = Variable(get_ohe(det_obj_list)).cuda()
                real_l = Variable(get_ohe(caption)).cuda()

                det_loss = nn.SmoothL1Loss()(fake_l, real_l)
                errG_total = det_loss + errG + kl_loss * cfg.TRAIN.COEFF.KL
                errG_total.backward()
                optimizerG.step()

                count = count + 1
                if i % 100 == 0:
                    summary_D = summary.scalar('D_loss', errD.item())
                    summary_D_r = summary.scalar('D_loss_real', errD_real)
                    summary_D_w = summary.scalar('D_loss_wrong', errD_wrong)
                    summary_D_f = summary.scalar('D_loss_fake', errD_fake)
                    summary_G = summary.scalar('G_loss', errG.item())
                    summary_KL = summary.scalar('KL_loss', kl_loss.item())
                    summary_DET = summary.scalar('det_loss', det_loss.item())

                    self.summary_writer.add_summary(summary_D, count)
                    self.summary_writer.add_summary(summary_D_r, count)
                    self.summary_writer.add_summary(summary_D_w, count)
                    self.summary_writer.add_summary(summary_D_f, count)
                    self.summary_writer.add_summary(summary_G, count)
                    self.summary_writer.add_summary(summary_KL, count)
                    self.summary_writer.add_summary(summary_DET, count)

                    # save the image result for each epoch
                    inputs = (txt_embedding, fixed_noise)
                    lr_fake, fake, _, _ = \
                        nn.parallel.data_parallel(netG, inputs, self.gpus)
                    save_img_results(real_img_cpu, fake, epoch, self.image_dir)
                    if lr_fake is not None:
                        save_img_results(None, lr_fake, epoch, self.image_dir)
            end_t = time.time()
            print(
                '''[%d/%d][%d/%d] Loss_D: %.4f Loss_G: %.4f Loss_KL: %.4f
                     Loss_real: %.4f Loss_wrong:%.4f Loss_fake %.4f
                     Total Time: %.2fsec
                  ''' %
                (epoch, self.max_epoch, i, len(data_loader), errD.item(),
                 errG.item(), kl_loss.item(), errD_real, errD_wrong, errD_fake,
                 (end_t - start_t)))
            if epoch % self.snapshot_interval == 0:
                save_model(netG, netD, epoch, self.model_dir)
        #
        save_model(netG, netD, self.max_epoch, self.model_dir)
        #
        self.summary_writer.close()
示例#3
0
    def train(self, data_loader, stage=1, max_objects=3):
        if stage == 1:
            netG, netD = self.load_network_stageI()
        else:
            netG, netD = self.load_network_stageII()

        nz = cfg.Z_DIM
        batch_size = self.batch_size
        noise = Variable(torch.FloatTensor(batch_size, nz))
        # with torch.no_grad():
        fixed_noise = Variable(torch.FloatTensor(batch_size, nz).normal_(0, 1),
                               requires_grad=False)
        real_labels = Variable(torch.FloatTensor(batch_size).fill_(1))
        fake_labels = Variable(torch.FloatTensor(batch_size).fill_(0))
        if cfg.CUDA:
            noise, fixed_noise = noise.cuda(), fixed_noise.cuda()
            real_labels, fake_labels = real_labels.cuda(), fake_labels.cuda()

        generator_lr = cfg.TRAIN.GENERATOR_LR
        discriminator_lr = cfg.TRAIN.DISCRIMINATOR_LR
        lr_decay_step = cfg.TRAIN.LR_DECAY_EPOCH

        netG_para = []
        for p in netG.parameters():
            if p.requires_grad:
                netG_para.append(p)
        optimizerD = optim.Adam(netD.parameters(),
                                lr=cfg.TRAIN.DISCRIMINATOR_LR,
                                betas=(0.5, 0.999))
        optimizerG = optim.Adam(netG_para,
                                lr=cfg.TRAIN.GENERATOR_LR,
                                betas=(0.5, 0.999))

        count = 0
        for epoch in range(self.max_epoch):
            start_t = time.time()
            if epoch % lr_decay_step == 0 and epoch > 0:
                generator_lr *= 0.5
                for param_group in optimizerG.param_groups:
                    param_group['lr'] = generator_lr
                discriminator_lr *= 0.5
                for param_group in optimizerD.param_groups:
                    param_group['lr'] = discriminator_lr

            for i, data in enumerate(data_loader, 0):
                ######################################################
                # (1) Prepare training data
                ######################################################
                real_img_cpu, bbox, label, txt_embedding = data

                real_imgs = Variable(real_img_cpu)
                txt_embedding = Variable(txt_embedding)
                if cfg.CUDA:
                    real_imgs = real_imgs.cuda()
                    if cfg.STAGE == 1:
                        bbox = bbox.cuda()
                    elif cfg.STAGE == 2:
                        bbox = [bbox[0].cuda(), bbox[1].cuda()]
                    label = label.cuda()
                    txt_embedding = txt_embedding.cuda()

                if cfg.STAGE == 1:
                    bbox = bbox.view(-1, 4)
                    transf_matrices_inv = compute_transformation_matrix_inverse(
                        bbox)
                    transf_matrices_inv = transf_matrices_inv.view(
                        real_imgs.shape[0], max_objects, 2, 3)
                    transf_matrices = compute_transformation_matrix(bbox)
                    transf_matrices = transf_matrices.view(
                        real_imgs.shape[0], max_objects, 2, 3)
                elif cfg.STAGE == 2:
                    _bbox = bbox[0].view(-1, 4)
                    transf_matrices_inv = compute_transformation_matrix_inverse(
                        _bbox)
                    transf_matrices_inv = transf_matrices_inv.view(
                        real_imgs.shape[0], max_objects, 2, 3)

                    _bbox = bbox[1].view(-1, 4)
                    transf_matrices_inv_s2 = compute_transformation_matrix_inverse(
                        _bbox)
                    transf_matrices_inv_s2 = transf_matrices_inv_s2.view(
                        real_imgs.shape[0], max_objects, 2, 3)
                    transf_matrices_s2 = compute_transformation_matrix(_bbox)
                    transf_matrices_s2 = transf_matrices_s2.view(
                        real_imgs.shape[0], max_objects, 2, 3)

                # produce one-hot encodings of the labels
                _labels = label.long()
                # remove -1 to enable one-hot converting
                _labels[_labels < 0] = 80
                # label_one_hot = torch.cuda.FloatTensor(noise.shape[0], max_objects, 81).fill_(0)
                label_one_hot = torch.FloatTensor(noise.shape[0], max_objects,
                                                  81).fill_(0)
                label_one_hot = label_one_hot.scatter_(2, _labels, 1).float()

                #######################################################
                # (2) Generate fake images
                ######################################################
                noise.data.normal_(0, 1)
                if cfg.STAGE == 1:
                    inputs = (txt_embedding, noise, transf_matrices_inv,
                              label_one_hot)
                elif cfg.STAGE == 2:
                    inputs = (txt_embedding, noise, transf_matrices_inv,
                              transf_matrices_s2, transf_matrices_inv_s2,
                              label_one_hot)
                _, fake_imgs, mu, logvar, _ = nn.parallel.data_parallel(
                    netG, inputs, self.gpus)
                # _, fake_imgs, mu, logvar, _ = netG(txt_embedding, noise, transf_matrices_inv, label_one_hot)

                ############################
                # (3) Update D network
                ###########################
                netD.zero_grad()

                if cfg.STAGE == 1:
                    errD, errD_real, errD_wrong, errD_fake = \
                        compute_discriminator_loss(netD, real_imgs, fake_imgs,
                                                   real_labels, fake_labels,
                                                   label_one_hot, transf_matrices, transf_matrices_inv,
                                                   mu, self.gpus)
                elif cfg.STAGE == 2:
                    errD, errD_real, errD_wrong, errD_fake = \
                        compute_discriminator_loss(netD, real_imgs, fake_imgs,
                                                   real_labels, fake_labels,
                                                   label_one_hot, transf_matrices_s2, transf_matrices_inv_s2,
                                                   mu, self.gpus)
                errD.backward(retain_graph=True)
                optimizerD.step()
                ############################
                # (2) Update G network
                ###########################
                netG.zero_grad()
                if cfg.STAGE == 1:
                    errG = compute_generator_loss(netD, fake_imgs, real_labels,
                                                  label_one_hot,
                                                  transf_matrices,
                                                  transf_matrices_inv, mu,
                                                  self.gpus)
                elif cfg.STAGE == 2:
                    errG = compute_generator_loss(netD, fake_imgs, real_labels,
                                                  label_one_hot,
                                                  transf_matrices_s2,
                                                  transf_matrices_inv_s2, mu,
                                                  self.gpus)
                kl_loss = KL_loss(mu, logvar)
                errG_total = errG + kl_loss * cfg.TRAIN.COEFF.KL
                errG_total.backward()
                optimizerG.step()

                count += 1
                if i % 500 == 0:
                    summary_D = summary.scalar('D_loss', errD.item())
                    summary_D_r = summary.scalar('D_loss_real', errD_real)
                    summary_D_w = summary.scalar('D_loss_wrong', errD_wrong)
                    summary_D_f = summary.scalar('D_loss_fake', errD_fake)
                    summary_G = summary.scalar('G_loss', errG.item())
                    summary_KL = summary.scalar('KL_loss', kl_loss.item())

                    self.summary_writer.add_summary(summary_D, count)
                    self.summary_writer.add_summary(summary_D_r, count)
                    self.summary_writer.add_summary(summary_D_w, count)
                    self.summary_writer.add_summary(summary_D_f, count)
                    self.summary_writer.add_summary(summary_G, count)
                    self.summary_writer.add_summary(summary_KL, count)

                    # save the image result for each epoch
                    with torch.no_grad():
                        if cfg.STAGE == 1:
                            inputs = (txt_embedding, noise,
                                      transf_matrices_inv, label_one_hot)
                        elif cfg.STAGE == 2:
                            inputs = (txt_embedding, noise,
                                      transf_matrices_inv, transf_matrices_s2,
                                      transf_matrices_inv_s2, label_one_hot)
                        lr_fake, fake, _, _, _ = nn.parallel.data_parallel(
                            netG, inputs, self.gpus)
                        save_img_results(real_img_cpu, fake, epoch,
                                         self.image_dir)
                        if lr_fake is not None:
                            save_img_results(None, lr_fake, epoch,
                                             self.image_dir)
            with torch.no_grad():
                if cfg.STAGE == 1:
                    inputs = (txt_embedding, noise, transf_matrices_inv,
                              label_one_hot)
                elif cfg.STAGE == 2:
                    inputs = (txt_embedding, noise, transf_matrices_inv,
                              transf_matrices_s2, transf_matrices_inv_s2,
                              label_one_hot)
                lr_fake, fake, _, _, _ = nn.parallel.data_parallel(
                    netG, inputs, self.gpus)
                save_img_results(real_img_cpu, fake, epoch, self.image_dir)
                if lr_fake is not None:
                    save_img_results(None, lr_fake, epoch, self.image_dir)
            end_t = time.time()
            print(
                '''[%d/%d][%d/%d] Loss_D: %.4f Loss_G: %.4f Loss_KL: %.4f
                     Loss_real: %.4f Loss_wrong:%.4f Loss_fake %.4f
                     Total Time: %.2fsec
                  ''' %
                (epoch, self.max_epoch, i, len(data_loader), errD.item(),
                 errG.item(), kl_loss.item(), errD_real, errD_wrong, errD_fake,
                 (end_t - start_t)))
            if epoch % self.snapshot_interval == 0:
                save_model(netG, netD, optimizerG, optimizerD, epoch,
                           self.model_dir)
        #
        save_model(netG, netD, optimizerG, optimizerD, epoch, self.model_dir)
        #
        self.summary_writer.close()
示例#4
0
    def train(self, data_loader, stage=1, max_objects=3):
        if stage == 1:
            netG, netD = self.load_network_stageI()
        else:
            netG, netD = self.load_network_stageII()

        nz = cfg.Z_DIM
        batch_size = self.batch_size
        noise = Variable(torch.FloatTensor(batch_size, nz))
        # with torch.no_grad():
        fixed_noise = Variable(torch.FloatTensor(batch_size, nz).normal_(0, 1),
                               requires_grad=False)
        real_labels = Variable(torch.FloatTensor(batch_size).fill_(1))
        fake_labels = Variable(torch.FloatTensor(batch_size).fill_(0))
        if cfg.CUDA:
            noise, fixed_noise = noise.cuda(), fixed_noise.cuda()
            real_labels, fake_labels = real_labels.cuda(), fake_labels.cuda()

        generator_lr = cfg.TRAIN.GENERATOR_LR
        discriminator_lr = cfg.TRAIN.DISCRIMINATOR_LR
        lr_decay_step = cfg.TRAIN.LR_DECAY_EPOCH

        netG_para = []
        for p in netG.parameters():
            if p.requires_grad:
                netG_para.append(p)
        optimizerD = optim.Adam(netD.parameters(),
                                lr=cfg.TRAIN.DISCRIMINATOR_LR,
                                betas=(0.5, 0.999))
        optimizerG = optim.Adam(netG_para,
                                lr=cfg.TRAIN.GENERATOR_LR,
                                betas=(0.5, 0.999))
        ####
        startpoint = -1
        if cfg.NET_G != '':
            state_dict = torch.load(cfg.NET_G,
                                    map_location=lambda storage, loc: storage)
            optimizerD.load_state_dict(state_dict["optimD"])
            optimizerG.load_state_dict(state_dict["optimG"])
            startpoint = state_dict["epoch"]
            print(startpoint)
            print('Load Optim and optimizers as : ', cfg.NET_G)
        ####

        count = 0
        drive_count = 0
        for epoch in range(startpoint + 1, self.max_epoch):
            print('epoch : ', epoch, ' drive_count : ', drive_count)
            epoch_start_time = time.time()
            print(epoch)
            start_t = time.time()
            start_t500 = time.time()
            if epoch % lr_decay_step == 0 and epoch > 0:
                generator_lr *= 0.5
                for param_group in optimizerG.param_groups:
                    param_group['lr'] = generator_lr
                discriminator_lr *= 0.5
                for param_group in optimizerD.param_groups:
                    param_group['lr'] = discriminator_lr

            time_to_i = time.time()
            for i, data in enumerate(data_loader, 0):
                # if i >= 3360 :
                #     print ('Last Batches : ' , i)
                # if i < 10 :
                #     print ('first Batches : ' , i)
                # if i == 0 :
                #     print ('Startig! Batch ',i,'from total of 2070' )
                # if i % 10 == 0 and i!=0:
                #     end_t500 = time.time()
                #     print ('Batch Number : ' , i ,' |||||  Toatal Time : ' , (end_t500 - start_t500))
                #     start_t500 = time.time()
                ######################################################
                # (1) Prepare training data
                # if i < 10 :
                #     print (" (1) Prepare training data for batch : " , i)
                ######################################################
                #print ("Prepare training data for batch : " , i)
                real_img_cpu, bbox, label, txt_embedding = data

                real_imgs = Variable(real_img_cpu)
                txt_embedding = Variable(txt_embedding)
                if cfg.CUDA:
                    real_imgs = real_imgs.cuda()
                    if cfg.STAGE == 1:
                        bbox = bbox.cuda()
                    elif cfg.STAGE == 2:
                        bbox = [bbox[0].cuda(), bbox[1].cuda()]
                    label = label.cuda()
                    txt_embedding = txt_embedding.cuda()

                if cfg.STAGE == 1:
                    bbox = bbox.view(-1, 4)
                    transf_matrices_inv = compute_transformation_matrix_inverse(
                        bbox)
                    transf_matrices_inv = transf_matrices_inv.view(
                        real_imgs.shape[0], max_objects, 2, 3)
                    transf_matrices = compute_transformation_matrix(bbox)
                    transf_matrices = transf_matrices.view(
                        real_imgs.shape[0], max_objects, 2, 3)
                elif cfg.STAGE == 2:
                    _bbox = bbox[0].view(-1, 4)
                    transf_matrices_inv = compute_transformation_matrix_inverse(
                        _bbox)
                    transf_matrices_inv = transf_matrices_inv.view(
                        real_imgs.shape[0], max_objects, 2, 3)

                    _bbox = bbox[1].view(-1, 4)
                    transf_matrices_inv_s2 = compute_transformation_matrix_inverse(
                        _bbox)
                    transf_matrices_inv_s2 = transf_matrices_inv_s2.view(
                        real_imgs.shape[0], max_objects, 2, 3)
                    transf_matrices_s2 = compute_transformation_matrix(_bbox)
                    transf_matrices_s2 = transf_matrices_s2.view(
                        real_imgs.shape[0], max_objects, 2, 3)

                # produce one-hot encodings of the labels
                _labels = label.long()
                # remove -1 to enable one-hot converting
                _labels[_labels < 0] = 80
                if cfg.CUDA:
                    label_one_hot = torch.cuda.FloatTensor(
                        noise.shape[0], max_objects, 81).fill_(0)
                else:
                    label_one_hot = torch.FloatTensor(noise.shape[0],
                                                      max_objects, 81).fill_(0)
                label_one_hot = label_one_hot.scatter_(2, _labels, 1).float()

                #######################################################
                # # (2) Generate fake images
                # if i < 10 :
                #     print ("(2)Generate fake images")
                ######################################################

                noise.data.normal_(0, 1)
                if cfg.STAGE == 1:
                    inputs = (txt_embedding, noise, transf_matrices_inv,
                              label_one_hot)
                elif cfg.STAGE == 2:
                    inputs = (txt_embedding, noise, transf_matrices_inv,
                              transf_matrices_s2, transf_matrices_inv_s2,
                              label_one_hot)
                if cfg.CUDA:
                    _, fake_imgs, mu, logvar, _ = nn.parallel.data_parallel(
                        netG, inputs, self.gpus)
                else:
                    print('Hiiiiiiiiiiii')
                    _, fake_imgs, mu, logvar, _ = netG(txt_embedding, noise,
                                                       transf_matrices_inv,
                                                       label_one_hot)
                # _, fake_imgs, mu, logvar, _ = netG(txt_embedding, noise, transf_matrices_inv, label_one_hot)

                ############################
                # # (3) Update D network
                # if i < 10 :
                #     print("(3) Update D network")
                ###########################
                netD.zero_grad()

                if cfg.STAGE == 1:
                    errD, errD_real, errD_wrong, errD_fake = \
                        compute_discriminator_loss(netD, real_imgs, fake_imgs,
                                                   real_labels, fake_labels,
                                                   label_one_hot, transf_matrices, transf_matrices_inv,
                                                   mu, self.gpus)
                elif cfg.STAGE == 2:
                    errD, errD_real, errD_wrong, errD_fake = \
                        compute_discriminator_loss(netD, real_imgs, fake_imgs,
                                                   real_labels, fake_labels,
                                                   label_one_hot, transf_matrices_s2, transf_matrices_inv_s2,
                                                   mu, self.gpus)
                errD.backward(retain_graph=True)
                optimizerD.step()
                ############################
                # # (4) Update G network
                # if i < 10 :
                #     print ("(4) Update G network")
                ###########################
                netG.zero_grad()
                # if i < 10 :
                #     print ("netG.zero_grad")
                if cfg.STAGE == 1:
                    errG = compute_generator_loss(netD, fake_imgs, real_labels,
                                                  label_one_hot,
                                                  transf_matrices,
                                                  transf_matrices_inv, mu,
                                                  self.gpus)
                elif cfg.STAGE == 2:
                    # if i < 10 :
                    #     print ("cgf.STAGE = " , cfg.STAGE)
                    errG = compute_generator_loss(netD, fake_imgs, real_labels,
                                                  label_one_hot,
                                                  transf_matrices_s2,
                                                  transf_matrices_inv_s2, mu,
                                                  self.gpus)
                    # if i < 10 :
                    #     print("errG : ",errG)
                kl_loss = KL_loss(mu, logvar)
                # if i < 10 :
                #     print ("kl_loss = " , kl_loss)
                errG_total = errG + kl_loss * cfg.TRAIN.COEFF.KL
                # if i < 10 :
                #     print (" errG_total = " , errG_total )
                errG_total.backward()
                # if i < 10 :
                #     print ("errG_total.backward() ")
                optimizerG.step()
                # if i < 10 :
                #     print ("optimizerG.step() " )

                #print (" i % 500 == 0 :  " , i % 500 == 0 )
                end_t = time.time()
                #print ("batch time : " , (end_t - start_t))
                if i % 500 == 0:
                    #print (" i % 500 == 0" , i % 500 == 0 )
                    count += 1
                    summary_D = summary.scalar('D_loss', errD.item())
                    summary_D_r = summary.scalar('D_loss_real', errD_real)
                    summary_D_w = summary.scalar('D_loss_wrong', errD_wrong)
                    summary_D_f = summary.scalar('D_loss_fake', errD_fake)
                    summary_G = summary.scalar('G_loss', errG.item())
                    summary_KL = summary.scalar('KL_loss', kl_loss.item())

                    print('epoch     :  ', epoch)
                    print('count     :  ', count)
                    print('  i       :  ', i)
                    print('Time to i : ', time.time() - time_to_i)
                    time_to_i = time.time()
                    print('D_loss : ', errD.item())
                    print('D_loss_real : ', errD_real)
                    print('D_loss_wrong : ', errD_wrong)
                    print('D_loss_fake : ', errD_fake)
                    print('G_loss : ', errG.item())
                    print('KL_loss : ', kl_loss.item())
                    print('generator_lr : ', generator_lr)
                    print('discriminator_lr : ', discriminator_lr)
                    print('lr_decay_step : ', lr_decay_step)

                    self.summary_writer.add_summary(summary_D, count)
                    self.summary_writer.add_summary(summary_D_r, count)
                    self.summary_writer.add_summary(summary_D_w, count)
                    self.summary_writer.add_summary(summary_D_f, count)
                    self.summary_writer.add_summary(summary_G, count)
                    self.summary_writer.add_summary(summary_KL, count)

                    # save the image result for each epoch
                    with torch.no_grad():
                        if cfg.STAGE == 1:
                            inputs = (txt_embedding, noise,
                                      transf_matrices_inv, label_one_hot)
                        elif cfg.STAGE == 2:
                            inputs = (txt_embedding, noise,
                                      transf_matrices_inv, transf_matrices_s2,
                                      transf_matrices_inv_s2, label_one_hot)

                        if cfg.CUDA:
                            lr_fake, fake, _, _, _ = nn.parallel.data_parallel(
                                netG, inputs, self.gpus)
                        else:
                            lr_fake, fake, _, _, _ = netG(
                                txt_embedding, noise, transf_matrices_inv,
                                label_one_hot)

                        save_img_results(real_img_cpu, fake, epoch,
                                         self.image_dir)
                        if lr_fake is not None:
                            save_img_results(None, lr_fake, epoch,
                                             self.image_dir)
                if i % 100 == 0:
                    drive_count += 1
                    self.drive_summary_writer.add_summary(
                        summary_D, drive_count)
                    self.drive_summary_writer.add_summary(
                        summary_D_r, drive_count)
                    self.drive_summary_writer.add_summary(
                        summary_D_w, drive_count)
                    self.drive_summary_writer.add_summary(
                        summary_D_f, drive_count)
                    self.drive_summary_writer.add_summary(
                        summary_G, drive_count)
                    self.drive_summary_writer.add_summary(
                        summary_KL, drive_count)

            #print (" with torch.no_grad(): "  )
            with torch.no_grad():
                if cfg.STAGE == 1:
                    inputs = (txt_embedding, noise, transf_matrices_inv,
                              label_one_hot)
                elif cfg.STAGE == 2:
                    #print (" cfg.STAGE == 2: " , cfg.STAGE == 2 )
                    inputs = (txt_embedding, noise, transf_matrices_inv,
                              transf_matrices_s2, transf_matrices_inv_s2,
                              label_one_hot)
                    #print (" inputs " , inputs )
                lr_fake, fake, _, _, _ = nn.parallel.data_parallel(
                    netG, inputs, self.gpus)
                #print (" lr_fake, fake " , lr_fake, fake )
                save_img_results(real_img_cpu, fake, epoch, self.image_dir)
                #print (" save_img_results(real_img_cpu, fake, epoch, self.image_dir) " , )

                #print (" lr_fake is not None: " , lr_fake is not None )
                if lr_fake is not None:
                    save_img_results(None, lr_fake, epoch, self.image_dir)
                    #print (" save_img_results(None, lr_fake, epoch, self.image_dir) " )
                    #end_t = time.time()
                    #print ("batch time : " , (end_t - start_t))
            end_t = time.time()
            print(
                '''[%d/%d][%d/%d] Loss_D: %.4f Loss_G: %.4f Loss_KL: %.4f
                     Loss_real: %.4f Loss_wrong:%.4f Loss_fake %.4f
                     Total Time: %.2fsec
                  ''' %
                (epoch, self.max_epoch, i, len(data_loader), errD.item(),
                 errG.item(), kl_loss.item(), errD_real, errD_wrong, errD_fake,
                 (end_t - start_t)))
            if epoch % self.snapshot_interval == 0:
                save_model(netG, netD, optimizerG, optimizerD, epoch,
                           self.model_dir)

            print("keyTime |||||||||||||||||||||||||||||||")
            print("epoch_time : ", time.time() - epoch_start_time)
            print("KeyTime |||||||||||||||||||||||||||||||")

        #
        save_model(netG, netD, optimizerG, optimizerD, epoch, self.model_dir)
        #
        self.summary_writer.close()