示例#1
0
 def test_IOI_DICTIONARY_initialize(self):
     my_dict = dict()
     my_dict["dict_sample"] = (self.img, self.seg)
     interface = Dictionary_interface(my_dict)
     sample_list = interface.initialize("")
     self.assertEqual(len(sample_list), 1)
     self.assertEqual(sample_list[0], "dict_sample")
示例#2
0
 def setUpClass(self):
     np.random.seed(1234)
     # Create 2D imgaging and segmentation data set
     self.dataset2D = dict()
     for i in range(0, 6):
         img = np.random.rand(16, 16) * 255
         self.img = img.astype(int)
         seg = np.random.rand(16, 16) * 3
         self.seg = seg.astype(int)
         self.dataset2D["TEST.sample_" + str(i)] = (self.img, self.seg)
     # Initialize Dictionary IO Interface
     io_interface2D = Dictionary_interface(self.dataset2D,
                                           classes=3,
                                           three_dim=False)
     # Initialize temporary directory
     self.tmp_dir2D = tempfile.TemporaryDirectory(prefix="tmp.miscnn.")
     tmp_batches = os.path.join(self.tmp_dir2D.name, "batches")
     # Initialize Data IO
     self.data_io2D = Data_IO(io_interface2D,
                              input_path=os.path.join(self.tmp_dir2D.name),
                              output_path=os.path.join(self.tmp_dir2D.name),
                              batch_path=tmp_batches,
                              delete_batchDir=False)
     # Initialize Preprocessor
     self.pp2D = Preprocessor(self.data_io2D,
                              batch_size=2,
                              data_aug=None,
                              analysis="fullimage")
     # Get sample list
     self.sample_list2D = self.data_io2D.get_indiceslist()
     # Create 3D imgaging and segmentation data set
     self.dataset3D = dict()
     for i in range(0, 6):
         img = np.random.rand(16, 16, 16) * 255
         self.img = img.astype(int)
         seg = np.random.rand(16, 16, 16) * 3
         self.seg = seg.astype(int)
         self.dataset3D["TEST.sample_" + str(i)] = (self.img, self.seg)
     # Initialize Dictionary IO Interface
     io_interface3D = Dictionary_interface(self.dataset3D,
                                           classes=3,
                                           three_dim=True)
     # Initialize temporary directory
     self.tmp_dir3D = tempfile.TemporaryDirectory(prefix="tmp.miscnn.")
     tmp_batches = os.path.join(self.tmp_dir3D.name, "batches")
     # Initialize Data IO
     self.data_io3D = Data_IO(io_interface3D,
                              input_path=os.path.join(self.tmp_dir3D.name),
                              output_path=os.path.join(self.tmp_dir3D.name),
                              batch_path=tmp_batches,
                              delete_batchDir=False)
     # Initialize Preprocessor
     self.pp3D = Preprocessor(self.data_io3D,
                              batch_size=2,
                              data_aug=None,
                              analysis="fullimage")
     # Get sample list
     self.sample_list3D = self.data_io3D.get_indiceslist()
示例#3
0
 def test_IOI_DICTIONARY_loading(self):
     my_dict = dict()
     my_dict["dict_sample"] = (self.img, self.seg)
     interface = Dictionary_interface(my_dict)
     sample_list = interface.initialize("")
     img = interface.load_image(sample_list[0])
     seg = interface.load_segmentation(sample_list[0])
     self.assertTrue(np.array_equal(img[0], self.img))
     self.assertTrue(np.array_equal(seg, self.seg))
示例#4
0
 def test_SUBFUNCTIONS_preprocessing(self):
     ds = dict()
     for i in range(0, 10):
         img = np.random.rand(16, 16, 16) * 255
         img = img.astype(int)
         seg = np.random.rand(16, 16, 16) * 3
         seg = seg.astype(int)
         sample = (img, seg)
         ds["TEST.sample_" + str(i)] = sample
     io_interface = Dictionary_interface(ds, classes=3, three_dim=True)
     self.tmp_dir = tempfile.TemporaryDirectory(prefix="tmp.miscnn.")
     tmp_batches = os.path.join(self.tmp_dir.name, "batches")
     dataio = Data_IO(io_interface, input_path="", output_path="",
                      batch_path=tmp_batches, delete_batchDir=False)
     sf = [Resize((8,8,8)), Normalization(), Clipping(min=-1.0, max=0.0)]
     pp = Preprocessor(dataio, data_aug=None, batch_size=1,
                       prepare_subfunctions=False, analysis="fullimage",
                       subfunctions=sf)
     sample_list = dataio.get_indiceslist()
     batches = pp.run(sample_list, training=True, validation=False)
     for i in range(0, 10):
         img = batches[i][0]
         seg = batches[i][1]
         self.assertEqual(img.shape, (1,8,8,8,1))
         self.assertEqual(seg.shape, (1,8,8,8,3))
         self.assertTrue(np.min(img) >= -1.0 and np.max(img) <= 0.0)
     self.tmp_dir.cleanup()
示例#5
0
 def test_SUBFUNCTIONS_prepare_MULTIPROCESSING(self):
     ds = dict()
     for i in range(0, 5):
         img = np.random.rand(16, 16, 16) * 255
         img = img.astype(int)
         seg = np.random.rand(16, 16, 16) * 3
         seg = seg.astype(int)
         sample = (img, seg)
         ds["TEST.sample_" + str(i)] = sample
     io_interface = Dictionary_interface(ds, classes=3, three_dim=True)
     self.tmp_dir = tempfile.TemporaryDirectory(prefix="tmp.miscnn.")
     tmp_batches = os.path.join(self.tmp_dir.name, "batches")
     dataio = Data_IO(io_interface, input_path="", output_path="",
                      batch_path=tmp_batches, delete_batchDir=False)
     sf = [Resize((8,8,8)), Normalization(), Clipping(min=-1.0, max=0.0)]
     pp = Preprocessor(dataio, batch_size=1, prepare_subfunctions=True,
                       analysis="fullimage", subfunctions=sf,
                       use_multiprocessing=True)
     pp.mp_threads = 4
     sample_list = dataio.get_indiceslist()
     pp.run_subfunctions(sample_list, training=True)
     batches = pp.run(sample_list, training=True, validation=False)
     self.assertEqual(len(os.listdir(tmp_batches)), 5)
     for i in range(0, 5):
         file_prepared_subfunctions = os.path.join(tmp_batches,
                 str(pp.data_io.seed) + ".TEST.sample_" + str(i) + ".pickle")
         self.assertTrue(os.path.exists(file_prepared_subfunctions))
         img = batches[i][0]
         seg = batches[i][1]
         self.assertIsNotNone(img)
         self.assertIsNotNone(seg)
         self.assertEqual(img.shape, (1,8,8,8,1))
         self.assertEqual(seg.shape, (1,8,8,8,3))
示例#6
0
 def setUpClass(self):
     np.random.seed(1234)
     # Create imgaging and segmentation data set
     self.dataset = dict()
     for i in range(0, 10):
         img = np.random.rand(16, 16, 16) * 255
         self.img = img.astype(int)
         seg = np.random.rand(16, 16, 16) * 3
         self.seg = seg.astype(int)
         sample = (self.img, self.seg)
         self.dataset["TEST.sample_" + str(i)] = sample
     # Initialize Dictionary IO Interface
     io_interface = Dictionary_interface(self.dataset,
                                         classes=3,
                                         three_dim=True)
     # Initialize temporary directory
     self.tmp_dir = tempfile.TemporaryDirectory(prefix="tmp.miscnn.")
     tmp_batches = os.path.join(self.tmp_dir.name, "batches")
     # Initialize Data IO
     self.data_io = Data_IO(io_interface,
                            input_path="",
                            output_path="",
                            batch_path=tmp_batches,
                            delete_batchDir=False)
     # Initialize Data Augmentation
     self.data_aug = Data_Augmentation()
     # Get sample list
     self.sample_list = self.data_io.get_indiceslist()
示例#7
0
 def setUpClass(self):
     np.random.seed(1234)
     # Create 2D imgaging and segmentation data set
     self.dataset = dict()
     for i in range(0, 2):
         img = np.random.rand(16, 16) * 255
         self.img = img.astype(int)
         seg = np.random.rand(16, 16) * 2
         self.seg = seg.astype(int)
         self.dataset["TEST.sample_" + str(i)] = (self.img, self.seg)
     # Initialize Dictionary IO Interface
     io_interface = Dictionary_interface(self.dataset, classes=3,
                                           three_dim=False)
     # Initialize temporary directory
     self.tmp_dir = tempfile.TemporaryDirectory(prefix="tmp.miscnn.")
     tmp_batches = os.path.join(self.tmp_dir.name, "batches")
     # Initialize Data IO
     self.data_io = Data_IO(io_interface,
                            input_path=os.path.join(self.tmp_dir.name),
                            output_path=os.path.join(self.tmp_dir.name),
                            batch_path=tmp_batches, delete_batchDir=False)
     # Initialize Preprocessor
     self.pp = Preprocessor(self.data_io, batch_size=1,
                            data_aug=None, analysis="fullimage")
     # Initialize Neural Network
     self.model = Neural_Network(self.pp)
     # Get sample list
     self.sample_list = self.data_io.get_indiceslist()
示例#8
0
    def test_EVALUATION_leaveOneOut(self):
        # Create 3D imgaging and segmentation data set
        self.dataset3D = dict()
        for i in range(0, 6):
            img = np.random.rand(16, 16, 16) * 255
            self.img = img.astype(int)
            seg = np.random.rand(16, 16, 16) * 3
            self.seg = seg.astype(int)
            self.dataset3D["TEST.sample_" + str(i)] = (self.img, self.seg)
        # Initialize Dictionary IO Interface
        io_interface3D = Dictionary_interface(self.dataset3D, classes=3,
                                              three_dim=True)
        # Initialize temporary directory
        self.tmp_dir3D = tempfile.TemporaryDirectory(prefix="tmp.miscnn.")
        tmp_batches = os.path.join(self.tmp_dir3D.name, "batches")
        # Initialize Data IO
        self.data_io3D = Data_IO(io_interface3D,
                                 input_path=os.path.join(self.tmp_dir3D.name),
                                 output_path=os.path.join(self.tmp_dir3D.name),
                                 batch_path=tmp_batches, delete_batchDir=False)
        # Initialize Preprocessor
        self.pp3D = Preprocessor(self.data_io3D, batch_size=2,
                                 data_aug=None, analysis="fullimage")
        # Initialize Neural Network
        model = Neural_Network(self.pp3D)
        # Get sample list
        self.sample_list3D = self.data_io3D.get_indiceslist()

        eval_path = os.path.join(self.tmp_dir3D.name, "evaluation")
        leave_one_out(self.sample_list3D, model, epochs=3, iterations=None,
                      evaluation_path=eval_path, callbacks=[])
        self.assertTrue(os.path.exists(eval_path))
        # Cleanup stuff
        self.tmp_dir3D.cleanup()
示例#9
0
 def setUpClass(self):
     np.random.seed(1234)
     # Create 2D imgaging and segmentation data set
     self.dataset2D = dict()
     for i in range(0, 10):
         img = np.random.rand(16, 16) * 255
         img = img.astype(int)
         seg = np.random.rand(16, 16) * 2
         seg = seg.astype(int)
         self.dataset2D["TEST.sample_" + str(i)] = (img, seg)
     # Initialize Dictionary IO Interface
     io_interface2D = Dictionary_interface(self.dataset2D,
                                           classes=3,
                                           three_dim=False)
     # Initialize temporary directory
     self.tmp_dir2D = tempfile.TemporaryDirectory(prefix="tmp.miscnn.")
     tmp_batches = os.path.join(self.tmp_dir2D.name, "batches")
     # Initialize Data IO
     self.data_io2D = Data_IO(io_interface2D,
                              input_path="",
                              output_path="",
                              batch_path=tmp_batches,
                              delete_batchDir=False)
     # Create 3D imgaging and segmentation data set
     self.dataset3D = dict()
     for i in range(0, 10):
         img = np.random.rand(16, 16, 16) * 255
         img = img.astype(int)
         seg = np.random.rand(16, 16, 16) * 3
         seg = seg.astype(int)
         if i in range(8, 10): sample = (img, None)
         else: sample = (img, seg)
         self.dataset3D["TEST.sample_" + str(i)] = sample
     # Initialize Dictionary IO Interface
     io_interface3D = Dictionary_interface(self.dataset3D,
                                           classes=3,
                                           three_dim=True)
     # Initialize temporary directory
     self.tmp_dir3D = tempfile.TemporaryDirectory(prefix="tmp.miscnn.")
     tmp_batches = os.path.join(self.tmp_dir3D.name, "batches")
     # Initialize Data IO
     self.data_io3D = Data_IO(io_interface3D,
                              input_path="",
                              output_path="",
                              batch_path=tmp_batches,
                              delete_batchDir=False)
示例#10
0
 def test_IOI_DICTIONARY_predictionhandling(self):
     my_dict = dict()
     my_dict["dict_sample"] = (self.img, self.seg)
     interface = Dictionary_interface(my_dict)
     sample_list = interface.initialize("")
     interface.save_prediction(self.seg, "dict_sample", "")
     pred = interface.load_prediction("dict_sample", "")
     self.assertTrue(np.array_equal(pred, self.seg))
示例#11
0
 def test_IOI_DICTIONARY_predictionhandling(self):
     my_dict = dict()
     my_dict["dict_sample"] = (self.img, self.seg)
     interface = Dictionary_interface(my_dict)
     sample_list = interface.initialize("")
     sample = MIScnn_sample.Sample("dict_sample", np.asarray([0]), 1, 2)
     sample.add_prediction(self.seg);
     interface.save_prediction(sample, "")
     pred = interface.load_prediction("dict_sample", "")
     self.assertTrue(np.array_equal(pred.reshape(self.seg.shape), self.seg))
示例#12
0
 def setUpClass(self):
     # Create imgaging and segmentation data set
     np.random.seed(1234)
     self.dataset = dict()
     for i in range(0, 10):
         img = np.random.rand(16, 16, 16) * 255
         self.img = img.astype(int)
         seg = np.random.rand(16, 16, 16) * 3
         self.seg = seg.astype(int)
         if i == 3: sample = (self.img, self.seg, self.seg)
         elif i == 5: sample = (self.img, None, self.seg)
         else: sample = (self.img, self.seg)
         self.dataset["TEST.sample_" + str(i)] = sample
     # Initialize Dictionary IO Interface
     self.io_interface = Dictionary_interface(self.dataset)
     # Initialize temporary directory
     self.tmp_dir = tempfile.TemporaryDirectory(prefix="tmp.miscnn.")
     self.tmp_batches = os.path.join(self.tmp_dir.name, "batches")
示例#13
0
 def test_SUBFUNCTIONS_postprocessing(self):
     ds = dict()
     for i in range(0, 10):
         img = np.random.rand(16, 16, 16) * 255
         img = img.astype(int)
         seg = np.random.rand(16, 16, 16) * 3
         seg = seg.astype(int)
         sample = (img, seg)
         ds["TEST.sample_" + str(i)] = sample
     io_interface = Dictionary_interface(ds, classes=3, three_dim=True)
     self.tmp_dir = tempfile.TemporaryDirectory(prefix="tmp.miscnn.")
     tmp_batches = os.path.join(self.tmp_dir.name, "batches")
     dataio = Data_IO(io_interface,
                      input_path="",
                      output_path="",
                      batch_path=tmp_batches,
                      delete_batchDir=False)
     sf = [Resize((9, 9, 9)), Normalization(), Clipping(min=-1.0, max=0.0)]
     pp = Preprocessor(dataio,
                       batch_size=1,
                       prepare_subfunctions=False,
                       analysis="patchwise-grid",
                       subfunctions=sf,
                       patch_shape=(4, 4, 4))
     sample_list = dataio.get_indiceslist()
     for index in sample_list:
         sample = dataio.sample_loader(index)
         for sf in pp.subfunctions:
             sf.preprocessing(sample, training=False)
         pp.cache["shape_" + str(index)] = sample.img_data.shape
         sample.seg_data = np.random.rand(9, 9, 9) * 3
         sample.seg_data = sample.seg_data.astype(int)
         sample.seg_data = to_categorical(sample.seg_data, num_classes=3)
         data_patches = pp.analysis_patchwise_grid(sample,
                                                   training=True,
                                                   data_aug=False)
         seg_list = []
         for i in range(0, len(data_patches)):
             seg_list.append(data_patches[i][1])
         seg = np.stack(seg_list, axis=0)
         self.assertEqual(seg.shape, (27, 4, 4, 4, 3))
         pred = pp.postprocessing(sample, seg)
         self.assertEqual(pred.shape, (16, 16, 16))
     self.tmp_dir.cleanup()
示例#14
0
 def test_SUBFUNCTIONS_fullrun(self):
     ds = dict()
     for i in range(0, 10):
         img = np.random.rand(16, 16, 16) * 255
         img = img.astype(int)
         seg = np.random.rand(16, 16, 16) * 3
         seg = seg.astype(int)
         sample = (img, seg)
         ds["TEST.sample_" + str(i)] = sample
     io_interface = Dictionary_interface(ds, classes=3, three_dim=True)
     self.tmp_dir = tempfile.TemporaryDirectory(prefix="tmp.miscnn.")
     tmp_batches = os.path.join(self.tmp_dir.name, "batches")
     dataio = Data_IO(io_interface, input_path="", output_path="",
                      batch_path=tmp_batches, delete_batchDir=False)
     sf = [Resize((16,16,16)), Normalization(), Clipping(min=-1.0, max=0.0)]
     pp = Preprocessor(dataio, batch_size=1, prepare_subfunctions=True,
                       analysis="fullimage", subfunctions=sf)
     nn = Neural_Network(preprocessor=pp)
     sample_list = dataio.get_indiceslist()
     nn.predict(sample_list, return_output=True)
示例#15
0
 def test_IOI_DICTIONARY_creation(self):
     my_dict = dict()
     my_dict["dict_sample"] = (self.img, self.seg)
     interface = Dictionary_interface(my_dict)