class IdentifyBins(Task): """Identifies which bin to drop markers into, centers over it Start: Both bins visible in downward cam Finish: Centered over chosen bin """ def on_first_run(self, bin_group, heading=None, *args, **kwargs): self.logi("Centering over bins...") self.logv("Starting IdentifyBins task") self.task = DownwardTarget(px=0.0025, py=0.0025) self.align_checker = ConsistencyCheck(6, 6) # TODO start alignment task. self.init_time = self.this_run_time self.bin_group = bin_group if bin1.covered == FAST_RUN: self.target_bin = bin1 else: self.target_bin = bin2 def on_run(self, bin_group, heading=None): self.bin1_results = self.bin_group.get() target = get_camera_center(self.bin1_results) # TODO Increase deadband as time increases. self.task((self.bin1_results.x, self.bin1_results.y), target=target, deadband=(25, 25), valid=lambda: self.bin1_results.probability > 0.0) if self.task.finished: if heading is None: target_heading = shm.kalman.heading.get() + self.bin1_results.angle else: target_heading = heading() align_task = Heading(target_heading, deadband=0.5) align_task() if self.align_checker.check(align_task.finished): VelocityX(0)() VelocityY(0)() self.finish() else: self.align_checker.clear() def on_finish(self): self.logi("Centered!") self.logv('IdentifyBins task finished in {} seconds!'.format( self.this_run_time - self.init_time))
class ConsistentObject: """ Consistency-check an object's existence Inputted objects must have an x and y field """ def __init__(self, seen_cons_check=(2, 3), unseen_cons_check=(5, 6)): self.last_obj = None self.tracking = False self.seen_cons_check = ConsistencyCheck(*seen_cons_check) self.unseen_cons_check = ConsistencyCheck(*unseen_cons_check) def map(self, obj): """ Call with a valid object to count as "seeing the object", or with None to count as "not seeing the object" """ if obj is not None: self.last_obj = obj if self.tracking: self.unseen_cons_check.add(False) else: self.seen_cons_check.add(True) if self.seen_cons_check.check(): self.tracking = True self.seen_cons_check.clear() self.unseen_cons_check.clear() else: if self.tracking: self.unseen_cons_check.add(True) if self.unseen_cons_check.check(): self.tracking = False self.seen_cons_check.clear() self.unseen_cons_check.clear() self.last_obj = None else: self.seen_cons_check.add(False) self.last_obj = None if self.tracking: return self.last_obj else: return None
class ConsistentObject: """ Consistency-check an object's existence """ def __init__(self, seen_cons_check=(2, 3), unseen_cons_check=(5, 6)): self.last_obj = None self.tracking = False self.seen_cons_check = ConsistencyCheck(*seen_cons_check) self.unseen_cons_check = ConsistencyCheck(*unseen_cons_check) def map(self, obj): """ Call with a valid object to count as "seeing the object", or with None to count as "not seeing the object" """ if obj is not None: self.last_obj = obj if self.tracking: self.unseen_cons_check.add(False) else: self.seen_cons_check.add(True) if self.seen_cons_check.check(): self.tracking = True self.seen_cons_check.clear() self.unseen_cons_check.clear() else: if self.tracking: self.unseen_cons_check.add(True) if self.unseen_cons_check.check(): self.tracking = False self.seen_cons_check.clear() self.unseen_cons_check.clear() self.last_obj = None else: self.seen_cons_check.add(False) self.last_obj = None if self.tracking: return self.last_obj else: return None
class FindPinger(StatefulTask): def __init__(self, method, ontop_of_pinger=ontop_of_pinger_elevation, *args, **kwargs): super().__init__(*args, **kwargs) self.track_method = method self.ontop_of_pinger = ontop_of_pinger def on_first_run(self): assert isinstance(self.track_method, TrackMethod) self.follow_task = None self.heading_to_pinger = None set_gain() shm.hydrophones_settings.track_frequency_target.set(PINGER_FREQUENCY) shm.hydrophones_settings.track_magnitude_threshold.set( TRACK_MAG_THRESH) shm.hydrophones_settings.track_cooldown_samples.set( TRACK_COOLDOWN_SAMPLES) shm.navigation_settings.position_controls.set(1) shm.navigation_settings.optimize.set(0) self.localizer = Localizer(PINGER_FREQUENCY) self.has_made_progress = False self.hydro_watcher = shm.watchers.watcher() self.hydro_watcher.watch(shm.hydrophones_results_track) self.time_since_last_ping = self.this_run_time self.pinger_positions = collections.deque(maxlen=7) self.silencer = ThrusterSilencer() self.pinger = None self.ping_deviating_checker = ConsistencyCheck(7, 10) ontop_success = None if STOP_OVER_PINGER: ontop_success = 2 else: ontop_success = 6 self.ontop_checker = ConsistencyCheck(ontop_success, 5) self.pings = [] def generate_states(self): return "listen", { "listen": { "enter": self.enter_listen, "exit": self.exit_listen, "tick": self.listen }, "follow": { "enter": self.enter_follow, "tick": self.follow } } # Check for new pings, if there is one return its heading and elevation and add it to the # pings list def update_pings(self): self.silencer() # TODO Better way to filter out bad pings when thrusters are running. # If the watcher has not changed, there is no new ping if not self.hydro_watcher.has_changed(): # TODO Do something here if too much time has passed since last ping. return None # There is a new ping! self.time_since_last_ping = self.this_run_time # TODO Will this be long after the watcher fired? # Need to ensure that there is little delay. results = shm.hydrophones_results_track.get() kalman = shm.kalman.get() phases = (results.diff_phase_x, results.diff_phase_y) if not self.localizer.is_valid(phases[0], phases[1]): self.logi("Warning: Measured phases (%0.3f %0.3f) are not possible given " "physical parameters" % \ (phases[0], phases[1])) head, elev = self.localizer.get_heading_elevation(*phases) abs_head = (head + shm.kalman.heading.get()) % 360 self.logi("Ping: Phases: (%0.3f %0.3f), Relative Heading: %0.5f, Absolute " "Heading: %0.3f, Elevation: %0.1f" % \ (phases[0], phases[1], head, abs_head, elev)) in_silence = self.silencer.in_silence() # TODO Better way to detect ping period. this_ping_time = \ results.daemon_start_time + results.tracked_ping_time self.silencer.schedule_silence(this_ping_time + PINGER_PERIOD - 0.2, 3.0) self.logi("This time: %0.3f, This ping time %0.3f, Diff: %0.3f" % (self.this_run_time, this_ping_time, self.this_run_time - this_ping_time)) # If the thrusters are not in silence, then we may have heard thruster # noise and thought it was a ping; ignore it if not in_silence: self.logi("Heard ping but thrusters are not silenced, ignoring") return None # Record ping data sub_pos = get_sub_position(kalman) sub_quat = get_sub_quaternion(kalman) ping_data = PingData(phases, head, elev, sub_pos, sub_quat) self.pings.append(ping_data) return ping_data def enter_listen(self): self.logi("Stopping to listen for pings") kalman = shm.kalman.get() shm.navigation_settings.position_controls.set(1) desires = shm.navigation_desires.get() desires.north = kalman.north desires.east = kalman.east shm.navigation_desires.set(desires) # Clear previous pings self.pings = [] def exit_listen(self): self.logi("Exiting listen state") shm.navigation_settings.position_controls.set(0) def listen(self): self.update_pings() # If we haven't even gotten MIN_CONSISTENT_PINGS in total, there won't be # enough consistent ones, no point in continuing if len(self.pings) < MIN_CONSISTENT_PINGS: return # We want to make sure pings are consistent before following them. To do # this, first cluster the pings by heading headings, elevations = zip(*[ self.localizer.get_heading_elevation(*ping.phases) for ping in self.pings ]) data = get_clusterable(headings) clusters = fclusterdata(data, 8, criterion="distance") # The best cluster is the one with the most pings in it counted = collections.Counter(clusters) best_cluster, n_best = max(counted.items(), key=lambda item: item[1]) # To follow a heading, we require that at least three pings are in the # cluster which contains it if n_best >= MIN_CONSISTENT_PINGS: # Compute average phase for best cluster good_pings = [self.pings[i] for i, cluster_num in enumerate(clusters) \ if cluster_num == best_cluster] x_phases = [ping.phases[0] for ping in good_pings] y_phases = [ping.phases[1] for ping in good_pings] avg_phase_x = np.mean(x_phases) avg_phase_y = np.mean(y_phases) self.logi("Average phases (%f, %f) for best cluster %s" % \ (avg_phase_x, avg_phase_y, str(self.pings))) if self.track_method == TrackMethod.position: # Localize pinger to a position for ping in good_pings: self.localizer.add_observation(ping.phases, ping.sub_pos, ping.sub_quat) est_pinger_pos = self.localizer.compute_position() self.pinger_positions.append(est_pinger_pos) self.logi("Localized pinger to: %s" % str(est_pinger_pos)) self.logi("All estimated positions: %s" % str(self.pinger_positions)) self.follow_position = est_pinger_pos elif self.track_method == TrackMethod.heading: # Update the heading and elevation of the pinger pinger_head, elev = self.localizer.get_heading_elevation( avg_phase_x, avg_phase_y) sub_head = shm.kalman.heading.get() self.heading_to_pinger = heading = (pinger_head + sub_head) % 360 self.follow_elevation = elev return "follow" def elevation_to_distance(self, elevation): return HYDROPHONES_PINGER_DEPTH * math.tan(math.radians(elevation)) def enter_follow(self): self.logi("Following a heading of %0.3f" % self.heading_to_pinger) self.follow_change_heading = Heading() self.follow_inital_heading = Heading(self.heading_to_pinger + heading_offset) self.follow_vel_x = VelocityX() self.follow_vel_y = VelocityY() distance_to_pinger = self.elevation_to_distance(self.follow_elevation) self.follow_vel_x(x_dir * self.get_follow_speed(distance_to_pinger)) self.follow_vel_y(0.0) # Proportional control to slow down near the pinger def get_follow_speed(self, distance): # Start slowing down at SLOW_DOWN_DISTANCE speed = distance / SLOW_DOWN_DISTANCE # Don't do nothing dumb if speed > MAX_FOLLOW_SPEED: speed = MAX_FOLLOW_SPEED if speed < MIN_FOLLOW_SPEED: speed = MIN_FOLLOW_SPEED return speed def follow_heading(self, new_ping): distance_to_pinger = self.elevation_to_distance(new_ping.elevation) speed = self.get_follow_speed(distance_to_pinger) # Check if the ping suggests the pinger is in a heading deviating from # the current follow heading new_ping_heading = (new_ping.heading + shm.kalman.heading.get()) % 360 heading_deviation = abs(new_ping_heading - self.heading_to_pinger) # When we are close to the pinger, headings will vary more, allow for # deviation # Note, this is fairly broken, because it assumes we get good pings # while moving! Realistically, we should just move forward for a set time, # and then get new heading. BUT, since the consistency check will really # just wait for the requisite number of pings (since its a safe assumption # that we're just getting garbage), we can essentially turn this into # a makeshift timer by changing the window size on consistency check (:139) if new_ping.elevation > MIN_DEVIATING_PING_ELEVATION: deviating_ping = heading_deviation > MAX_FOLLOW_HEADING_DEVIATION if deviating_ping: self.logi( "Ping heading deviated from follow heading by %0.3f, more " "than maximum allowed" % heading_deviation) else: self.heading_to_pinger = new_ping_heading if self.ping_deviating_checker.check(deviating_ping): self.logi( "Consistently getting deviating pings! Stopping to listen." ) self.ping_deviating_checker.clear() return "listen" self.logi("Going straight for the pinger!") self.follow_vel_x(x_dir * speed) self.follow_vel_y(0.0) self.follow_change_heading(self.heading_to_pinger + heading_offset) else: velocity = rotate([speed, 0], new_ping.heading) self.logi("We are close! Translating to pinger: Velocity (%0.3f, " "%0.3f)" % (velocity[0], velocity[1])) self.follow_vel_x(velocity[0]) self.follow_vel_y(velocity[1]) return None def follow_position(self): return None def follow(self): # Turn to face the pinger if not self.follow_inital_heading.finished: self.follow_inital_heading() return new_ping = self.update_pings() if new_ping is not None: # Check whether we are on top of the pinger ontop_of_pinger = self.ontop_of_pinger(new_ping) if (ontop_of_pinger): self.logi( "Ontop of pinger validator returned true! Waiting for " "consitent positives to terminate following.") if self.ontop_checker.check(ontop_of_pinger): self.finish() if self.track_method == TrackMethod.heading: return self.follow_heading(new_ping) elif self.track_method == TrackMethod.position: return self.follow_position(new_ping)
class IdentifyBins(Task): """ Identifies which bin to drop markers into, centers over it """ def on_first_run(self, run_type, heading=None, uncovered_bin_vector=None): self.logi("Centering over bins...") self.logv("Starting IdentifyBins task") self.center_valid = False self.center_coords = (0, 0) self.task = DownwardTarget(px=0.0025, py=0.0025, point=lambda: self.center_coords, valid=lambda: self.center_valid) self.center_checker = ConsistencyCheck(15, 17) self.align_checker = ConsistencyCheck(6, 6) # TODO start alignment task. self.init_time = self.this_run_time self.uncovered_bin_vector = None self.seen_two = False cam = get_downward_camera() self.cover_tracker = Tracker(cam['width'] * 0.15) self.yellow_tracker = Tracker(cam['width'] * 0.15) def on_run(self, run_type, heading=None, uncovered_bin_vector=None): yellows = [TrackedBin(b.center_x, b.center_y) if b.probability > 0.0 else None for b in [yellow1.get(), yellow2.get()] ] cover_g = cover.get() covert = TrackedBin(cover_g.center_x, cover_g.center_y) if cover_g.probability > 0.0 else None self.consistent_bins = self.yellow_tracker.track(*yellows) self.consistent_cover = self.cover_tracker.track(covert, None) def calculate_bin_vector(bin1, bin2): body_frame = [(bin1.x, bin1.y), (bin2.x, bin2.y)] world_frame = [np.array(rotate(body, -shm.kalman.heading.get())) for body in body_frame] bin2bin = world_frame[1] - world_frame[0] return bin2bin / np.linalg.norm(bin2bin) if any(self.consistent_cover) and any(self.consistent_bins): if run_type == "cover": good_cover = self.consistent_cover[0] if good_cover is None: good_cover = self.consistent_cover[1] good_yellow = self.consistent_bins[0] if good_yellow is None: good_yellow = self.consistent_bins[1] bin2cover_hat = calculate_bin_vector(good_yellow, good_cover) if self.uncovered_bin_vector is None: # TODO Take average here. self.uncovered_bin_vector = bin2cover_hat self.logi("Discovered cover to bin world vector %0.2f %0.2f" % \ (self.uncovered_bin_vector[0], self.uncovered_bin_vector[1])) if run_type == "cover": cands = self.consistent_cover + self.consistent_bins else: if all(self.consistent_bins) and uncovered_bin_vector is not None: bin2bin = calculate_bin_vector(self.consistent_bins[0], self.consistent_bins[1]) if bin2bin.dot(uncovered_bin_vector()) > 0: index = 1 else: index = 0 if not self.seen_two: self.seen_two = True self.uncovered_ind = index self.logi("Chose bin with index %d: current coords %d %d" % \ (self.uncovered_ind, self.consistent_bins[self.uncovered_ind].x, self.consistent_bins[self.uncovered_ind].y)) else: if self.uncovered_ind == index: self.logv("Confirmed uncovered bin has index %d" % index) else: self.logi("WARNING: Detected new uncovered bin index %d!" % index) if not self.seen_two: self.logv("Did not find two yellow!") cands = self.consistent_bins + self.consistent_cover else: cands = [self.consistent_bins[self.uncovered_ind], self.consistent_bins[1 - self.uncovered_ind]] + self.consistent_cover for i, cand in enumerate(cands): if cand is not None: self.logv("Found good bin of index %d" % i) self.center_valid = True self.center_coords = cand.x, cand.y break else: self.logv("No good bins found to center on!") self.center_valid = False # Assumes cover and contours from same camera target = get_downward_camera_center() # TODO Increase deadband as time increases. self.task(target=target, deadband=(25, 25)) if self.center_checker.check(self.task.finished): if run_type == "cover" or heading is None: if heading is None: target_heading = shm.kalman.heading.get() + cover_g.angle else: target_heading = heading() align_task = Heading(target_heading, deadband=0.5) align_task() if self.align_checker.check(align_task.finished): VelocityX(0)() VelocityY(0)() self.finish() else: self.finish() else: self.align_checker.clear() def on_finish(self): self.logi("Centered!") self.logv('IdentifyBins task finished in {} seconds!'.format( self.this_run_time - self.init_time))