示例#1
0
def test_poly_extr():
    """Test of polynomial extrapolator."""
    # test (order=1)
    fac = PolyFactory(X_VALS, order=1)
    fac.run_classical(f_lin)
    assert np.isclose(fac.reduce(), f_lin(0, err=0), atol=CLOSE_TOL)
    # test that, for some non-linear functions,
    # order=1 is bad while order=2 is better.
    seeded_f = apply_seed_to_func(f_non_lin, SEED)
    fac = PolyFactory(X_VALS, order=1)
    fac.run_classical(seeded_f)
    assert not np.isclose(fac.reduce(), seeded_f(0, err=0), atol=NOT_CLOSE_TOL)
    seeded_f = apply_seed_to_func(f_non_lin, SEED)
    fac = PolyFactory(X_VALS, order=2)
    fac.run_classical(seeded_f)
    assert np.isclose(fac.reduce(), seeded_f(0, err=0), atol=CLOSE_TOL)
示例#2
0
def test_too_few_points_for_polyfit_warning():
    """Test that the correct warning is raised if data is not enough to fit."""
    fac = PolyFactory(X_VALS, order=2)
    fac._instack = [
        {
            "scale_factor": 1.0,
            "shots": 100
        },
        {
            "scale_factor": 2.0,
            "shots": 100
        },
    ]
    fac._outstack = [1.0, 2.0]
    with warns(
            ExtrapolationWarning,
            match=r"The extrapolation fit may be ill-conditioned.",
    ):
        fac.reduce()
    # test also the static "extrapolate" method.
    with warns(
            ExtrapolationWarning,
            match=r"The extrapolation fit may be ill-conditioned.",
    ):
        PolyFactory.extrapolate([1.0, 2.0], [1.0, 2.0], order=2)
示例#3
0
def test_opt_params_poly_factory(order):
    """Tests that optimal parameters are stored after calling the reduce method.
    """
    fac = PolyFactory(scale_factors=np.linspace(1, 10, 10), order=order)
    assert fac.opt_params == []
    fac.iterate(apply_seed_to_func(f_non_lin, seed=SEED))
    zne_value = fac.reduce()
    assert len(fac.opt_params) == order + 1
    assert np.isclose(fac.opt_params[-1], zne_value)
示例#4
0
def test_poly_extr():
    """Test of polynomial extrapolator."""
    # test (order=1)
    fac = PolyFactory(X_VALS, order=1)
    fac.run_classical(f_lin)
    assert np.isclose(fac.reduce(), f_lin(0, err=0), atol=CLOSE_TOL)
    # test that, for some non-linear functions,
    # order=1 is bad while order=2 is better.
    seeded_f = apply_seed_to_func(f_non_lin, SEED)
    fac = PolyFactory(X_VALS, order=1)
    fac.run_classical(seeded_f)
    assert not np.isclose(fac.reduce(), seeded_f(0, err=0), atol=NOT_CLOSE_TOL)
    seeded_f = apply_seed_to_func(f_non_lin, SEED)
    fac = PolyFactory(X_VALS, order=2)
    fac.run_classical(seeded_f)
    zne_value = fac.reduce()
    assert np.isclose(fac.reduce(), seeded_f(0, err=0), atol=CLOSE_TOL)
    exp_vals = fac.get_expectation_values()
    assert np.isclose(fac.extrapolate(X_VALS, exp_vals, order=2), zne_value)
    assert np.isclose(
        fac.extrapolate(X_VALS, exp_vals, order=2, full_output=True)[0],
        zne_value,
    )
示例#5
0
def test_with_observable_batched_factory(executor):
    observable = Observable(PauliString(spec="Z"))
    circuit = cirq.Circuit(cirq.H.on(cirq.LineQubit(0))) * 20

    noisy_value = observable.expectation(circuit, sample_bitstrings)
    zne_value = execute_with_zne(
        circuit,
        executor=functools.partial(executor, noise_model=cirq.depolarize),
        observable=observable,
        factory=PolyFactory(scale_factors=[1, 3, 5], order=2),
    )
    true_value = observable.expectation(
        circuit, functools.partial(compute_density_matrix, noise_level=(0, )))

    assert abs(zne_value - true_value) <= abs(noisy_value - true_value)
示例#6
0
def test_too_few_points_for_polyfit_error():
    """Test that the correct error is raised if data is not enough to fit."""
    fac = PolyFactory(X_VALS, order=2)
    fac._instack = [
        {
            "scale_factor": 1.0,
            "shots": 100
        },
        {
            "scale_factor": 2.0,
            "shots": 100
        },
    ]
    fac._outstack = [1.0, 2.0]
    with raises(ValueError, match=r"Extrapolation order is too high."):
        fac.reduce()
示例#7
0
def test_with_observable_two_qubits(executor):
    observable = Observable(PauliString(spec="XX", coeff=-1.21),
                            PauliString(spec="ZZ", coeff=0.7))
    circuit = cirq.Circuit(cirq.H.on(cirq.LineQubit(0)),
                           cirq.CNOT.on(*cirq.LineQubit.range(2)))
    circuit += [circuit, cirq.inverse(circuit)] * 20

    noisy_value = observable.expectation(circuit, sample_bitstrings)
    zne_value = execute_with_zne(
        circuit,
        executor=functools.partial(executor, noise_model=cirq.depolarize),
        observable=observable,
        factory=PolyFactory(scale_factors=[1, 3, 5], order=2),
    )
    true_value = observable.expectation(
        circuit, functools.partial(compute_density_matrix, noise_level=(0, )))

    assert abs(zne_value - true_value) <= 3 * abs(noisy_value - true_value)
示例#8
0
def test_shot_list_errors():
    """Tests errors related to the "shot_lists" argument."""
    with raises(IndexError, match=r"must have the same length."):
        PolyFactory(X_VALS, order=2, shot_list=[1, 2])
    with raises(TypeError, match=r"valid iterator of integers"):
        PolyFactory(X_VALS, order=2, shot_list=[1.0, 2])
示例#9
0
def test_order_is_too_high_for_scale_factors():
    """Test that a wrong initialization error is raised."""
    with raises(ValueError, match=r"The extrapolation order cannot exceed"):
        _ = PolyFactory(X_VALS, order=10)
from mitiq.benchmarks.utils import noisy_simulation
from mitiq.zne import mitigate_executor

SCALE_FUNCTIONS = [
    fold_gates_at_random,
    fold_gates_from_left,
    fold_gates_from_right,
    fold_global,
]

FACTORIES = [
    AdaExpFactory(steps=3, scale_factor=1.5, asymptote=0.25),
    ExpFactory([1.0, 1.4, 2.1], asymptote=0.25),
    RichardsonFactory([1.0, 1.4, 2.1]),
    LinearFactory([1.0, 1.6]),
    PolyFactory([1.0, 1.4, 2.1], order=2),
]


def test_rb_circuits():
    depths = range(2, 10, 2)

    # test single qubit RB
    for trials in [2, 3]:
        circuits = rb_circuits(n_qubits=1, num_cliffords=depths, trials=trials)
        for qc in circuits:
            # we check the ground state population to ignore any global phase
            wvf = qc.final_wavefunction()
            zero_prob = abs(wvf[0]**2)
            assert np.isclose(zero_prob, 1)