def _train(model,
           optim_inf,
           scheduler_inf,
           checkpointer,
           epochs,
           train_loader,
           test_loader,
           stat_tracker,
           log_dir,
           device,
           decoder_training=False):
    '''
    Training loop for optimizing encoder
    '''
    # If mixed precision is on, will add the necessary hooks into the model
    # and optimizer for half() conversions
    model, optim_inf = mixed_precision.initialize(model, optim_inf)
    optim_raw = mixed_precision.get_optimizer(optim_inf)

    test = test_decoder_model if model.decoder_training else test_model  # Nawid - This chooses which method of testing to use

    # get target LR for LR warmup -- assume same LR for all param groups
    for pg in optim_raw.param_groups:
        lr_real = pg['lr']

    # IDK, maybe this helps?
    torch.cuda.empty_cache()

    # prepare checkpoint and stats accumulator
    next_epoch, total_updates = checkpointer.get_current_position()
    fast_stats = AverageMeterSet()
    # run main training loop
    for epoch in range(next_epoch, epochs):
        epoch_stats = AverageMeterSet()
        epoch_updates = 0
        time_start = time.time()

        for _, ((images1, images2), labels) in enumerate(
                train_loader):  # Nawid - obtains the images and the labels
            # get data and info about this minibatch
            labels = torch.cat([labels, labels]).to(device)
            images1 = images1.to(device)
            images2 = images2.to(device)
            # run forward pass through model to get global and local features
            res_dict = model(x1=images1, x2=images2, class_only=False)

            # compute costs for all self-supervised tasks
            loss_g2l = (
                res_dict['g2l_1t5'] + res_dict['g2l_1t7'] + res_dict['g2l_5t5']
            )  # Nawid - loss for the global to local features predictions

            loss_inf = loss_g2l + res_dict['lgt_reg']

            if model.decoder_training:
                image_reconstructions = res_dict['decoder_output']
                target_images = torch.cat(
                    [images1, images2]
                )  # Nawid - Concatenate both batches along the dimension of number of training examples
                auxiliary_loss = loss_MSE(image_reconstructions, target_images)
                epoch_stats.update_dict(
                    {'loss_decoder': auxiliary_loss.item()}, n=1)

            else:
                # compute loss for online evaluation classifiers
                lgt_glb_mlp, lgt_glb_lin = res_dict['class']
                auxiliary_loss = (
                    loss_xent(lgt_glb_mlp, labels)
                    +  # Nawid - Loss for the classifier terms
                    loss_xent(lgt_glb_lin, labels))
                epoch_stats.update_dict({'loss_cls': auxiliary_loss.item()},
                                        n=1)
                update_train_accuracies(epoch_stats, labels, lgt_glb_mlp,
                                        lgt_glb_lin)

            # do hacky learning rate warmup -- we stop when LR hits lr_real
            if (total_updates < 500):
                lr_scale = min(1., float(total_updates + 1) / 500.)
                for pg in optim_raw.param_groups:
                    pg['lr'] = lr_scale * lr_real

            # reset gradient accumlators and do backprop
            loss_opt = auxiliary_loss  #+loss_inf   # Nawid - Total loss is the loss from the global to local prediction as well as the loss from the classifier predictions
            optim_inf.zero_grad()
            mixed_precision.backward(
                loss_opt, optim_inf)  # backwards with fp32/fp16 awareness
            optim_inf.step()

            # record loss and accuracy on minibatch
            epoch_stats.update_dict(
                {  # Nawid - Changed the update so that the auxillary loss is calculated above
                    'loss_inf': loss_inf.item(),
                    'loss_g2l': loss_g2l.item(),
                    'lgt_reg': res_dict['lgt_reg'].item(),
                    'loss_g2l_1t5': res_dict['g2l_1t5'].item(),
                    'loss_g2l_1t7': res_dict['g2l_1t7'].item(),
                    'loss_g2l_5t5': res_dict['g2l_5t5'].item()
                },
                n=1)

            # shortcut diagnostics to deal with long epochs
            total_updates += 1
            epoch_updates += 1
            if (total_updates % 100) == 0:
                # IDK, maybe this helps?
                torch.cuda.empty_cache()
                time_stop = time.time()
                spu = (time_stop - time_start) / 100.
                print(
                    'Epoch {0:d}, {1:d} updates -- {2:.4f} sec/update'.format(
                        epoch, epoch_updates, spu))
                time_start = time.time()
            if (total_updates % 500) == 0:
                # record diagnostics
                eval_start = time.time()
                fast_stats = AverageMeterSet(
                )  # Nawid - This is short term stats which are reset regularly
                test(
                    model,
                    test_loader,
                    device,
                    fast_stats,
                    log_dir,
                    max_evals=100000
                )  # Nawd - test is chosen to be test_decoder_model or test_model at the start of the function based on whether decoder training is occuring or not

                stat_tracker.record_stats(
                    fast_stats.averages(total_updates, prefix='fast/')
                )  # Nawid - This is used to record the data in tensorboard, where the average of the different values are placed in tensorboard,total_updates is the index which is used to place information in tensorbard i believe
                eval_time = time.time() - eval_start
                stat_str = fast_stats.pretty_string(ignore=model.tasks)
                stat_str = '-- {0:d} updates, eval_time {1:.2f}: {2:s}'.format(
                    total_updates, eval_time, stat_str)
                print(stat_str)

        # update learning rate
        scheduler_inf.step(epoch)
        test(model,
             test_loader,
             device,
             epoch_stats,
             log_dir,
             max_evals=500000)
        epoch_str = epoch_stats.pretty_string(ignore=model.tasks)
        diag_str = '{0:d}: {1:s}'.format(epoch, epoch_str)
        print(diag_str)
        sys.stdout.flush()
        stat_tracker.record_stats(
            epoch_stats.averages(epoch, prefix='costs/')
        )  # Nawid - This is used to update long-term stats which are used for a long-period of time
        checkpointer.update(epoch + 1, total_updates)
示例#2
0
def _train(model, optim_inf, scheduler_inf, checkpointer, epochs, train_loader,
           test_loader, stat_tracker, log_dir, device, args):
    '''
    Training loop for optimizing encoder
    '''
    # If mixed precision is on, will add the necessary hooks into the model
    # and optimizer for half() conversions
    model, optim_inf = mixed_precision.initialize(model, optim_inf)
    optim_raw = mixed_precision.get_optimizer(optim_inf)
    # get target LR for LR warmup -- assume same LR for all param groups
    for pg in optim_raw.param_groups:
        lr_real = pg['lr']

    # IDK, maybe this helps?
    # but it makes the training slow
    # torch.cuda.empty_cache()

    # prepare checkpoint and stats accumulator
    next_epoch, total_updates = checkpointer.get_current_position()
    fast_stats = AverageMeterSet()
    # run main training loop
    for epoch in range(next_epoch, epochs):
        epoch_stats = AverageMeterSet()
        epoch_updates = 0
        time_start = time.time()

        for _, ((images1, images2), labels) in enumerate(train_loader):
            # get data and info about this minibatch
            labels = torch.cat([labels, labels]).to(device)
            images1 = images1.to(device)
            images2 = images2.to(device)
            # run forward pass through model to get global and local features
            res_dict = model(args, x1=images1, x2=images2, class_only=False)
            lgt_glb_mlp, lgt_glb_lin = res_dict['class']
            # compute costs for all self-supervised tasks
            loss_g2l = (res_dict['g2l_1t5'] + res_dict['g2l_1t7'] +
                        res_dict['g2l_5t5'])
            loss_inf = loss_g2l + res_dict['lgt_reg']

            # compute loss for online evaluation classifiers
            loss_cls = (loss_xent(lgt_glb_mlp, labels) +
                        loss_xent(lgt_glb_lin, labels))

            # do hacky learning rate warmup -- we stop when LR hits lr_real
            if (total_updates < 500):
                lr_scale = min(1., float(total_updates + 1) / 500.)
                for pg in optim_raw.param_groups:
                    pg['lr'] = lr_scale * lr_real

            # reset gradient accumlators and do backprop
            loss_opt = loss_inf + loss_cls
            optim_inf.zero_grad()
            mixed_precision.backward(
                loss_opt, optim_inf)  # backwards with fp32/fp16 awareness
            if args.grad_clip_value and (total_updates >= 500):
                torch.nn.utils.clip_grad_value_(model.parameters(),
                                                args.grad_clip_value)
            optim_inf.step()

            # record loss and accuracy on minibatch
            epoch_stats.update_dict(
                {
                    'loss_inf': loss_inf.detach().item(),
                    'loss_cls': loss_cls.detach().item(),
                    'loss_g2l': loss_g2l.detach().item(),
                    'lgt_reg': res_dict['lgt_reg'].detach().item(),
                    'loss_g2l_1t5': res_dict['g2l_1t5'].detach().item(),
                    'loss_g2l_1t7': res_dict['g2l_1t7'].detach().item(),
                    'loss_g2l_5t5': res_dict['g2l_5t5'].detach().item()
                },
                n=1)
            update_train_accuracies(epoch_stats, labels, lgt_glb_mlp,
                                    lgt_glb_lin)

            # shortcut diagnostics to deal with long epochs
            total_updates += 1
            epoch_updates += 1
            # this command makes the training slow
            # torch.cuda.empty_cache()
            if (total_updates % 100) == 0:
                # IDK, maybe this helps?
                time_stop = time.time()
                spu = (time_stop - time_start) / 100.
                print(
                    'Epoch {0:d}, {1:d} updates -- {2:.4f} sec/update'.format(
                        epoch, epoch_updates, spu))
                time_start = time.time()
            if (total_updates % 500) == 0:
                # record diagnostics
                eval_start = time.time()
                fast_stats = AverageMeterSet()
                test_model(args,
                           model,
                           test_loader,
                           device,
                           fast_stats,
                           max_evals=100000)
                stat_tracker.record_stats(
                    fast_stats.averages(total_updates, prefix='fast/'))
                eval_time = time.time() - eval_start
                stat_str = fast_stats.pretty_string(ignore=model.tasks)
                stat_str = '-- {0:d} updates, eval_time {1:.2f}: {2:s}'.format(
                    total_updates, eval_time, stat_str)
                print(stat_str)

        # update learning rate
        scheduler_inf.step(epoch)
        test_model(args,
                   model,
                   test_loader,
                   device,
                   epoch_stats,
                   max_evals=500000)
        epoch_str = epoch_stats.pretty_string(ignore=model.tasks)
        diag_str = '{0:d}: {1:s}'.format(epoch, epoch_str)
        print(diag_str)
        sys.stdout.flush()
        stat_tracker.record_stats(epoch_stats.averages(epoch, prefix='costs/'))
        checkpointer.update(epoch + 1, total_updates)
示例#3
0
文件: ben_train.py 项目: pkuqgg/amdim
mods_cls = [m for m in model.class_modules]
mods_to_opt = mods_inf + mods_cls

optim_inf = torch.optim.Adam([{
    'params': mod.parameters(),
    'lr': args.learning_rate
} for mod in mods_to_opt],
                             betas=(0.8, 0.999),
                             weight_decay=1e-5,
                             eps=1e-8)

scheduler = MultiStepLR(optim_inf, milestones=[10, 20], gamma=0.2)
epochs = 50

model, optim_inf = mixed_precision.initialize(model, optim_inf)
optim_raw = mixed_precision.get_optimizer(optim_inf)

for p in optim_raw.param_groups:
    lr_real = p['lr']

# --
# Run

_ = torch.cuda.empty_cache()

writer = SummaryWriter(
    logdir=os.path.join(os.path.join(args.output_dir, args.run_name), 'logs'))

t = time()
step_counter = 0
for epoch_idx in range(epochs):