name = 'mdl_res34localpool_168168_lessaugs_mucm_fixed_adam_onecycle_fld3of5' logger = CSVLogger(learn, name) # ========================================================================================= # learn.fit_one_cycle( # 100, # max_lr=0.001, # wd=0.0, # pct_start=0.0, # div_factor=100., # #final_div=100., # callbacks=[logger, SaveModelCallback(learn, monitor='metric_tot', mode='max', name=name), MuCmCallback(learn)] # ) learn.fit(100, lr=0.001, wd=0.0, callbacks=[ logger, SaveModelCallback(learn, monitor='metric_tot', mode='max', name=name), MuCmCallback(learn), ReduceLROnPlateauCallback(learn, patience=10, factor=0.5, min_lr=.00001) ])
# ========================================================================================= classifier = mdl_ResDenHybrid() class SGD_m5(SGD): def __init__(self, *args, **kwargs): super().__init__(momentum=0.5, *args, **kwargs) learn = Learner( data_bunch, classifier, loss_func=Loss_combine_weighted_v2(), opt_func=SGD_m5, metrics=[Metric_grapheme(), Metric_vowel(), Metric_consonant(), Metric_tot()] ) name = 'mdl_ResDenHybrid_sgd_lessaugs_mucm_fixed_raw_onecycle_fld1of5' logger = CSVLogger(learn, name) # ========================================================================================= learn.fit_one_cycle( 160, max_lr=0.05, wd=0.0, pct_start=0.0, div_factor=50., final_div=100., callbacks=[logger, SaveModelCallback(learn, monitor='metric_tot', mode='max', name=name), MuCmCallback(learn)] )