示例#1
0
    def _forward_pass(cls, model, trainer, normalized_dense_matrix, actions):
        C2.set_model(model)

        parameters = []
        q_values = "q_values"
        workspace.FeedBlob(q_values, np.zeros(1, dtype=np.float32))
        trainer.build_predictor(model, normalized_dense_matrix, q_values)
        parameters.extend(model.GetAllParams())

        action_names = C2.NextBlob("action_names")
        parameters.append(action_names)
        workspace.FeedBlob(action_names, np.array(actions))
        action_range = C2.NextBlob("action_range")
        parameters.append(action_range)
        workspace.FeedBlob(action_range, np.array(list(range(len(actions)))))

        output_shape = C2.Shape(q_values)
        output_shape_row_count = C2.Slice(output_shape, starts=[0], ends=[1])

        output_row_shape = C2.Slice(q_values, starts=[0, 0], ends=[-1, 1])

        output_feature_keys = "output/string_weighted_multi_categorical_features.keys"
        workspace.FeedBlob(output_feature_keys, np.zeros(1, dtype=np.int64))
        output_feature_keys_matrix = C2.ConstantFill(
            output_row_shape, value=0, dtype=caffe2_pb2.TensorProto.INT64)
        # Note: sometimes we need to use an explicit output name, so we call
        #  C2.net().Fn(...)
        C2.net().FlattenToVec([output_feature_keys_matrix],
                              [output_feature_keys])

        output_feature_lengths = (
            "output/string_weighted_multi_categorical_features.lengths")
        workspace.FeedBlob(output_feature_lengths, np.zeros(1, dtype=np.int32))
        output_feature_lengths_matrix = C2.ConstantFill(
            output_row_shape, value=1, dtype=caffe2_pb2.TensorProto.INT32)
        C2.net().FlattenToVec([output_feature_lengths_matrix],
                              [output_feature_lengths])

        output_keys = "output/string_weighted_multi_categorical_features.values.keys"
        workspace.FeedBlob(output_keys, np.array(["a"]))
        C2.net().Tile([action_names, output_shape_row_count], [output_keys],
                      axis=1)

        output_lengths_matrix = C2.ConstantFill(
            output_row_shape,
            value=len(actions),
            dtype=caffe2_pb2.TensorProto.INT32)
        output_lengths = (
            "output/string_weighted_multi_categorical_features.values.lengths")
        workspace.FeedBlob(output_lengths, np.zeros(1, dtype=np.int32))
        C2.net().FlattenToVec([output_lengths_matrix], [output_lengths])

        output_values = (
            "output/string_weighted_multi_categorical_features.values.values")
        workspace.FeedBlob(output_values, np.array([1.0]))
        C2.net().FlattenToVec([q_values], [output_values])
        return parameters, q_values
示例#2
0
    def get_max_q_values(self, states: str, possible_actions: str,
                         use_target_network: bool) -> str:
        """
        Takes in an array of states and outputs an array of the same shape
        whose ith entry = max_{pna} Q(state_i, pna).

        :param states: Numpy array with shape (batch_size, state_dim). Each
            row contains a representation of a state.
        :param possible_next_actions: Numpy array with shape (batch_size, action_dim).
            possible_next_actions[i][j] = 1 iff the agent can take action j from
            state i.
        :use_target_network: Boolean that indicates whether or not to use this
            trainer's TargetNetwork to compute Q values.
        """
        q_values = self.get_q_values_all_actions(states, use_target_network)

        # Set the q values of impossible actions to a very large negative
        #    number.
        inverse_pna = C2.ConstantFill(possible_actions, value=1.0)
        possible_actions_float = C2.Cast(possible_actions,
                                         to=core.DataType.FLOAT)
        inverse_pna = C2.Sub(inverse_pna, possible_actions_float)
        inverse_pna = C2.Mul(inverse_pna,
                             self.ACTION_NOT_POSSIBLE_VAL,
                             broadcast=1)
        q_values = C2.Add(q_values, inverse_pna)

        q_values_max = C2.ReduceBackMax(q_values, num_reduce_dims=1)
        return C2.ExpandDims(q_values_max, dims=[1])
    def _create_rl_train_net(self) -> None:
        self.rl_train_model = ModelHelper(name="rl_train_" + self.model_id)
        C2.set_model(self.rl_train_model)

        if self.reward_shape is not None:
            for action_index, boost in self.reward_shape.items():
                action_boost = C2.Mul(
                    C2.Slice(
                        "actions", starts=[0, action_index], ends=[-1, action_index + 1]
                    ),
                    boost,
                    broadcast=1,
                )
                C2.net().Sum(["rewards", action_boost], ["rewards"])

        if self.maxq_learning:
            next_q_values = self.get_max_q_values(
                "next_states", self.get_possible_next_actions(), True
            )
        else:
            next_q_values = self.get_q_values("next_states", "next_actions", True)

        discount_blob = C2.ConstantFill("time_diff", value=self.rl_discount_rate)
        if self.use_seq_num_diff_as_time_diff:
            time_diff_adjusted_discount_blob = C2.Pow(
                discount_blob, C2.Cast("time_diff", to=caffe2_pb2.TensorProto.FLOAT)
            )
        else:
            time_diff_adjusted_discount_blob = discount_blob

        q_vals_target = C2.Add(
            "rewards",
            C2.Mul(
                C2.Mul(
                    C2.Cast(
                        "not_terminals", to=caffe2_pb2.TensorProto.FLOAT
                    ),  # type: ignore
                    time_diff_adjusted_discount_blob,
                    broadcast=1,
                ),
                next_q_values,
            ),
        )

        self.update_model("states", "actions", q_vals_target)
        workspace.RunNetOnce(self.rl_train_model.param_init_net)
        self.rl_train_model.net.Proto().num_workers = (
            RLTrainer.DEFAULT_TRAINING_NUM_WORKERS
        )
        self.rl_train_model.net.Proto().type = "async_scheduling"
        workspace.CreateNet(self.rl_train_model.net)
        C2.set_model(None)
示例#4
0
    def _create_rl_train_net(self) -> None:
        self.rl_train_model = ModelHelper(name="rl_train_" + self.model_id)
        C2.set_model(self.rl_train_model)

        if self.maxq_learning:
            next_q_values = self.get_max_q_values(
                'next_states',
                self.get_possible_next_actions(),
                True,
            )
        else:
            next_q_values = self.get_q_values('next_states', 'next_actions',
                                              True)

        discount_blob = C2.ConstantFill("time_diff",
                                        value=self.rl_discount_rate)
        time_diff_adjusted_discount_blob = C2.Pow(
            discount_blob, C2.Cast("time_diff",
                                   to=caffe2_pb2.TensorProto.FLOAT))

        q_vals_target = C2.Add(
            "rewards",
            C2.Mul(
                C2.Mul(
                    C2.Cast("not_terminals",
                            to=caffe2_pb2.TensorProto.FLOAT),  # type: ignore
                    time_diff_adjusted_discount_blob,
                    broadcast=1,
                ),
                next_q_values,
            ),
        )

        self.update_model('states', 'actions', q_vals_target)
        workspace.RunNetOnce(self.rl_train_model.param_init_net)
        self.rl_train_model.net.Proto().num_workers = \
            RLTrainer.DEFAULT_TRAINING_NUM_WORKERS
        workspace.CreateNet(self.rl_train_model.net)
        C2.set_model(None)
    def export(cls,
               trainer,
               actions,
               state_normalization_parameters,
               int_features=False):
        """ Creates a DiscreteActionPredictor from a DiscreteActionTrainer.

        :param trainer DiscreteActionTrainer
        :param actions list of action names
        :param state_normalization_parameters state NormalizationParameters
        :param int_features boolean indicating if int features blob will be present
        """

        model = model_helper.ModelHelper(name="predictor")
        net = model.net
        C2.set_model(model)

        workspace.FeedBlob('input/image', np.zeros([1, 1, 1, 1],
                                                   dtype=np.int32))
        workspace.FeedBlob('input/float_features.lengths',
                           np.zeros(1, dtype=np.int32))
        workspace.FeedBlob('input/float_features.keys',
                           np.zeros(1, dtype=np.int64))
        workspace.FeedBlob('input/float_features.values',
                           np.zeros(1, dtype=np.float32))

        input_feature_lengths = 'input_feature_lengths'
        input_feature_keys = 'input_feature_keys'
        input_feature_values = 'input_feature_values'

        if int_features:
            workspace.FeedBlob('input/int_features.lengths',
                               np.zeros(1, dtype=np.int32))
            workspace.FeedBlob('input/int_features.keys',
                               np.zeros(1, dtype=np.int64))
            workspace.FeedBlob('input/int_features.values',
                               np.zeros(1, dtype=np.int32))
            C2.net().Cast(['input/int_features.values'],
                          ['input/int_features.values_float'],
                          dtype=caffe2_pb2.TensorProto.FLOAT)
            C2.net().MergeMultiScalarFeatureTensors([
                'input/float_features.lengths', 'input/float_features.keys',
                'input/float_features.values', 'input/int_features.lengths',
                'input/int_features.keys', 'input/int_features.values_float'
            ], [
                input_feature_lengths, input_feature_keys, input_feature_values
            ])
        else:
            C2.net().Copy(['input/float_features.lengths'],
                          [input_feature_lengths])
            C2.net().Copy(['input/float_features.keys'], [input_feature_keys])
            C2.net().Copy(['input/float_features.values'],
                          [input_feature_values])

        parameters = []
        if state_normalization_parameters is not None:
            preprocessor = PreprocessorNet(net, True)
            parameters.extend(preprocessor.parameters)
            normalized_dense_matrix, new_parameters = \
                preprocessor.normalize_sparse_matrix(
                    input_feature_lengths,
                    input_feature_keys,
                    input_feature_values,
                    state_normalization_parameters,
                    'state_norm',
                )
            parameters.extend(new_parameters)
        else:
            # Image input.  Note: Currently this does the wrong thing if
            #   more than one image is passed at a time.
            normalized_dense_matrix = 'input/image'

        new_parameters, q_values = RLPredictor._forward_pass(
            model,
            trainer,
            normalized_dense_matrix,
            actions,
        )
        parameters.extend(new_parameters)

        # Get 1 x n action index tensor under the max_q policy
        max_q_act_idxs = 'max_q_policy_actions'
        C2.net().Flatten([C2.ArgMax(q_values)], [max_q_act_idxs], axis=0)
        shape_of_num_of_states = 'num_states_shape'
        C2.net().FlattenToVec([max_q_act_idxs], [shape_of_num_of_states])
        num_states, _ = C2.Reshape(C2.Size(shape_of_num_of_states), shape=[1])

        # Get 1 x n action index tensor under the softmax policy
        temperature = C2.NextBlob("temperature")
        parameters.append(temperature)
        workspace.FeedBlob(
            temperature, np.array([trainer.rl_temperature], dtype=np.float32))
        tempered_q_values = C2.Div(q_values, "temperature", broadcast=1)
        softmax_values = C2.Softmax(tempered_q_values)
        softmax_act_idxs_nested = 'softmax_act_idxs_nested'
        C2.net().WeightedSample([softmax_values], [softmax_act_idxs_nested])
        softmax_act_idxs = 'softmax_policy_actions'
        C2.net().Flatten([softmax_act_idxs_nested], [softmax_act_idxs], axis=0)

        # Concat action index tensors to get 2 x n tensor - [[max_q], [softmax]]
        # transpose & flatten to get [a1_maxq, a1_softmax, a2_maxq, a2_softmax, ...]
        max_q_act_blob = C2.Cast(max_q_act_idxs,
                                 to=caffe2_pb2.TensorProto.INT32)
        softmax_act_blob = C2.Cast(softmax_act_idxs,
                                   to=caffe2_pb2.TensorProto.INT32)
        C2.net().Append([max_q_act_blob, softmax_act_blob], [max_q_act_blob])
        transposed_action_idxs = C2.Transpose(max_q_act_blob)
        flat_transposed_action_idxs = C2.FlattenToVec(transposed_action_idxs)
        output_values = 'output/string_single_categorical_features.values'
        workspace.FeedBlob(output_values, np.zeros(1, dtype=np.int64))
        C2.net().Gather(["action_names", flat_transposed_action_idxs],
                        [output_values])

        output_lengths = 'output/string_single_categorical_features.lengths'
        workspace.FeedBlob(output_lengths, np.zeros(1, dtype=np.int32))
        C2.net().ConstantFill([shape_of_num_of_states], [output_lengths],
                              value=2,
                              dtype=caffe2_pb2.TensorProto.INT32)

        output_keys = 'output/string_single_categorical_features.keys'
        workspace.FeedBlob(output_keys, np.zeros(1, dtype=np.int64))
        output_keys_tensor, _ = C2.Concat(
            C2.ConstantFill(shape=[1, 1],
                            value=0,
                            dtype=caffe2_pb2.TensorProto.INT64),
            C2.ConstantFill(shape=[1, 1],
                            value=1,
                            dtype=caffe2_pb2.TensorProto.INT64),
            axis=0,
        )
        output_key_tile = C2.Tile(output_keys_tensor, num_states, axis=0)
        C2.net().FlattenToVec([output_key_tile], [output_keys])

        workspace.RunNetOnce(model.param_init_net)
        workspace.CreateNet(net)
        return DiscreteActionPredictor(net, parameters, int_features)
示例#6
0
    def preprocess_blob(self, blob, normalization_parameters):
        """
        Takes in a blob and its normalization parameters. Outputs a tuple
        whose first element is a blob containing the normalized input blob
        and whose second element contains all the parameter blobs used to
        create it.

        Call this from a CPU context and ensure the input blob exists in it.
        """

        parameters: List[str] = []

        ZERO = self._store_parameter(parameters, "ZERO",
                                     np.array([0], dtype=np.float32))

        MISSING_U = self._store_parameter(
            parameters, "MISSING_U",
            np.array([MISSING_VALUE + 1e-4], dtype=np.float32))
        MISSING_L = self._store_parameter(
            parameters, "MISSING_L",
            np.array([MISSING_VALUE - 1e-4], dtype=np.float32))

        is_empty_l = C2.GT(blob, MISSING_L, broadcast=1)
        is_empty_u = C2.LT(blob, MISSING_U, broadcast=1)
        is_empty = C2.And(is_empty_l, is_empty_u)

        for i in range(len(normalization_parameters) - 1):
            if (normalization_parameters[i].feature_type !=
                    normalization_parameters[i + 1].feature_type):
                raise Exception(
                    "Only one feature type is allowed per call to preprocess_blob!"
                )
        feature_type = normalization_parameters[0].feature_type
        if feature_type == identify_types.BINARY:
            TOLERANCE = self._store_parameter(parameters, "TOLERANCE",
                                              np.array(1e-3, dtype=np.float32))
            is_gt_zero = C2.GT(blob,
                               C2.Add(ZERO, TOLERANCE, broadcast=1),
                               broadcast=1)
            is_lt_zero = C2.LT(blob,
                               C2.Sub(ZERO, TOLERANCE, broadcast=1),
                               broadcast=1)
            bool_blob = C2.Or(is_gt_zero, is_lt_zero)
            blob = C2.Cast(bool_blob, to=caffe2_pb2.TensorProto.FLOAT)
        elif feature_type == identify_types.PROBABILITY:
            blob = C2.Logit(C2.Clip(blob, min=0.01, max=0.99))
        elif feature_type == identify_types.ENUM:
            for parameter in normalization_parameters:
                possible_values = parameter.possible_values
                for x in possible_values:
                    if x < 0:
                        logger.fatal(
                            "Invalid enum possible value for feature: " +
                            str(x) + " " + str(parameter.possible_values))
                        raise Exception(
                            "Invalid enum possible value for feature " + blob +
                            ": " + str(x) + " " +
                            str(parameter.possible_values))

            int_blob = C2.Cast(blob, to=core.DataType.INT32)

            # Batch one hot transform with MISSING_VALUE as a possible value
            feature_lengths = [
                len(p.possible_values) + 1 for p in normalization_parameters
            ]
            feature_lengths_blob = self._store_parameter(
                parameters,
                "feature_lengths_blob",
                np.array(feature_lengths, dtype=np.int32),
            )

            feature_values = [
                x for p in normalization_parameters
                for x in p.possible_values + [int(MISSING_VALUE)]
            ]
            feature_values_blob = self._store_parameter(
                parameters,
                "feature_values_blob",
                np.array(feature_values, dtype=np.int32),
            )

            one_hot_output = C2.BatchOneHot(int_blob, feature_lengths_blob,
                                            feature_values_blob)
            flattened_one_hot = C2.FlattenToVec(one_hot_output)

            # Remove missing values with a mask
            cols_to_include = [[1] * len(p.possible_values) + [0]
                               for p in normalization_parameters]
            cols_to_include = [x for col in cols_to_include for x in col]
            mask = self._store_parameter(
                parameters, "mask", np.array(cols_to_include, dtype=np.int32))

            zero_vec = C2.ConstantFill(one_hot_output,
                                       value=0,
                                       dtype=caffe2_pb2.TensorProto.INT32)

            repeated_mask_bool = C2.Cast(C2.Add(zero_vec, mask, broadcast=1),
                                         to=core.DataType.BOOL)

            flattened_repeated_mask = C2.FlattenToVec(repeated_mask_bool)

            flattened_one_hot_proc = C2.NextBlob("flattened_one_hot_proc")
            flattened_one_hot_proc_indices = C2.NextBlob(
                "flattened_one_hot_proc_indices")
            C2.net().BooleanMask(
                [flattened_one_hot, flattened_repeated_mask],
                [flattened_one_hot_proc, flattened_one_hot_proc_indices],
            )

            one_hot_shape = C2.Shape(one_hot_output)

            shape_delta = self._store_parameter(
                parameters,
                "shape_delta",
                np.array([0, len(normalization_parameters)], dtype=np.int64),
            )

            target_shape = C2.Sub(one_hot_shape, shape_delta, broadcast=1)
            output_int_blob = C2.NextBlob("output_int_blob")
            output_int_blob_old_shape = C2.NextBlob(
                "output_int_blob_old_shape")
            C2.net().Reshape(
                [flattened_one_hot_proc, target_shape],
                [output_int_blob, output_int_blob_old_shape],
            )

            output_blob = C2.Cast(output_int_blob, to=core.DataType.FLOAT)

            return output_blob, parameters
        elif feature_type == identify_types.QUANTILE:
            # This transformation replaces a set of values with their quantile.
            # The quantile boundaries are provided in the normalization params.

            quantile_sizes = [
                len(norm.quantiles) for norm in normalization_parameters
            ]
            num_boundaries_blob = self._store_parameter(
                parameters,
                "num_boundaries_blob",
                np.array(quantile_sizes, dtype=np.int32),
            )

            quantile_values = np.array([], dtype=np.float32)
            quantile_labels = np.array([], dtype=np.float32)
            for norm in normalization_parameters:
                quantile_values = np.append(
                    quantile_values, np.array(norm.quantiles,
                                              dtype=np.float32))
                # TODO: Fix this: the np.unique is making this part not true.
                quantile_labels = np.append(
                    quantile_labels,
                    np.arange(len(norm.quantiles), dtype=np.float32) /
                    float(len(norm.quantiles)),
                )
            quantiles = np.vstack([quantile_values, quantile_labels]).T
            quantiles_blob = self._store_parameter(parameters,
                                                   "quantiles_blob", quantiles)

            quantile_blob = C2.Percentile(blob, quantiles_blob,
                                          num_boundaries_blob)
            blob = quantile_blob
        elif (feature_type == identify_types.CONTINUOUS
              or feature_type == identify_types.BOXCOX):
            boxcox_shifts = []
            boxcox_lambdas = []
            means = []
            stddevs = []

            for norm in normalization_parameters:
                if feature_type == identify_types.BOXCOX:
                    assert (norm.boxcox_shift is not None
                            and norm.boxcox_lambda is not None)
                    boxcox_shifts.append(norm.boxcox_shift)
                    boxcox_lambdas.append(norm.boxcox_lambda)
                means.append(norm.mean)
                stddevs.append(norm.stddev)

            if feature_type == identify_types.BOXCOX:
                boxcox_shift_blob = self._store_parameter(
                    parameters,
                    "boxcox_shift",
                    np.array(boxcox_shifts, dtype=np.float32),
                )
                boxcox_lambda_blob = self._store_parameter(
                    parameters,
                    "boxcox_shift",
                    np.array(boxcox_lambdas, dtype=np.float32),
                )

                blob = C2.BatchBoxCox(blob, boxcox_lambda_blob,
                                      boxcox_shift_blob)

            means_blob = self._store_parameter(
                parameters, "means_blob", np.array([means], dtype=np.float32))
            stddevs_blob = self._store_parameter(
                parameters, "stddevs_blob",
                np.array([stddevs], dtype=np.float32))

            blob = C2.Sub(blob, means_blob, broadcast=1, axis=0)
            blob = C2.Div(blob, stddevs_blob, broadcast=1, axis=0)
            if self.clip_anomalies:
                blob = C2.Clip(blob, min=-3.0, max=3.0)
        else:
            raise NotImplementedError(
                "Invalid feature type: {}".format(feature_type))

        zeros = C2.ConstantFill(blob, value=0.)
        output_blob = C2.Where(is_empty, zeros, blob)

        return output_blob, parameters
    def export(
        cls,
        trainer,
        state_normalization_parameters,
        action_normalization_parameters,
        int_features=False,
        model_on_gpu=False,
    ):
        """Export caffe2 preprocessor net and pytorch DQN forward pass as one
        caffe2 net.

        :param trainer ParametricDQNTrainer
        :param state_normalization_parameters state NormalizationParameters
        :param action_normalization_parameters action NormalizationParameters
        :param int_features boolean indicating if int features blob will be present
        :param model_on_gpu boolean indicating if the model is a GPU model or CPU model
        """

        input_dim = trainer.num_features
        if isinstance(trainer.q_network, DataParallel):
            trainer.q_network = trainer.q_network.module

        buffer = PytorchCaffe2Converter.pytorch_net_to_buffer(
            trainer.q_network, input_dim, model_on_gpu
        )
        qnet_input_blob, qnet_output_blob, caffe2_netdef = PytorchCaffe2Converter.buffer_to_caffe2_netdef(
            buffer
        )
        torch_workspace = caffe2_netdef.workspace

        parameters = torch_workspace.Blobs()
        for blob_str in parameters:
            workspace.FeedBlob(blob_str, torch_workspace.FetchBlob(blob_str))

        torch_init_net = core.Net(caffe2_netdef.init_net)
        torch_predict_net = core.Net(caffe2_netdef.predict_net)
        # While converting to metanetdef, the external_input of predict_net
        # will be recomputed. Add the real output of init_net to parameters
        # to make sure they will be counted.
        parameters.extend(
            set(caffe2_netdef.init_net.external_output)
            - set(caffe2_netdef.init_net.external_input)
        )

        # ensure state and action IDs have no intersection
        assert (
            len(
                set(state_normalization_parameters.keys())
                & set(action_normalization_parameters.keys())
            )
            == 0
        )

        model = model_helper.ModelHelper(name="predictor")
        net = model.net
        C2.set_model(model)

        workspace.FeedBlob("input/float_features.lengths", np.zeros(1, dtype=np.int32))
        workspace.FeedBlob("input/float_features.keys", np.zeros(1, dtype=np.int64))
        workspace.FeedBlob("input/float_features.values", np.zeros(1, dtype=np.float32))

        input_feature_lengths = "input_feature_lengths"
        input_feature_keys = "input_feature_keys"
        input_feature_values = "input_feature_values"

        if int_features:
            workspace.FeedBlob(
                "input/int_features.lengths", np.zeros(1, dtype=np.int32)
            )
            workspace.FeedBlob("input/int_features.keys", np.zeros(1, dtype=np.int64))
            workspace.FeedBlob("input/int_features.values", np.zeros(1, dtype=np.int32))
            C2.net().Cast(
                ["input/int_features.values"],
                ["input/int_features.values_float"],
                dtype=caffe2_pb2.TensorProto.FLOAT,
            )
            C2.net().MergeMultiScalarFeatureTensors(
                [
                    "input/float_features.lengths",
                    "input/float_features.keys",
                    "input/float_features.values",
                    "input/int_features.lengths",
                    "input/int_features.keys",
                    "input/int_features.values_float",
                ],
                [input_feature_lengths, input_feature_keys, input_feature_values],
            )
        else:
            C2.net().Copy(["input/float_features.lengths"], [input_feature_lengths])
            C2.net().Copy(["input/float_features.keys"], [input_feature_keys])
            C2.net().Copy(["input/float_features.values"], [input_feature_values])

        preprocessor = PreprocessorNet(True)
        sorted_state_features, _ = sort_features_by_normalization(
            state_normalization_parameters
        )
        state_dense_matrix, new_parameters = sparse_to_dense(
            input_feature_lengths,
            input_feature_keys,
            input_feature_values,
            sorted_state_features,
        )
        parameters.extend(new_parameters)
        state_normalized_dense_matrix, new_parameters = preprocessor.normalize_dense_matrix(
            state_dense_matrix,
            sorted_state_features,
            state_normalization_parameters,
            "state_norm",
            False,
        )
        parameters.extend(new_parameters)

        sorted_action_features, _ = sort_features_by_normalization(
            action_normalization_parameters
        )
        action_dense_matrix, new_parameters = sparse_to_dense(
            input_feature_lengths,
            input_feature_keys,
            input_feature_values,
            sorted_action_features,
        )
        parameters.extend(new_parameters)
        action_normalized_dense_matrix, new_parameters = preprocessor.normalize_dense_matrix(
            action_dense_matrix,
            sorted_action_features,
            action_normalization_parameters,
            "action_norm",
            False,
        )
        parameters.extend(new_parameters)

        state_action_normalized = "state_action_normalized"
        state_action_normalized_dim = "state_action_normalized_dim"
        net.Concat(
            [state_normalized_dense_matrix, action_normalized_dense_matrix],
            [state_action_normalized, state_action_normalized_dim],
            axis=1,
        )

        net.Copy([state_action_normalized], [qnet_input_blob])

        workspace.RunNetOnce(model.param_init_net)
        workspace.RunNetOnce(torch_init_net)

        net.AppendNet(torch_predict_net)

        new_parameters, q_values = RLPredictor._forward_pass(
            model, trainer, state_action_normalized, ["Q"], qnet_output_blob
        )
        parameters.extend(new_parameters)

        flat_q_values_key = (
            "output/string_weighted_multi_categorical_features.values.values"
        )
        num_examples, _ = C2.Reshape(C2.Size(flat_q_values_key), shape=[1])
        q_value_blob, _ = C2.Reshape(flat_q_values_key, shape=[1, -1])

        # Get 1 x n (number of examples) action index tensor under the max_q policy
        max_q_act_idxs = "max_q_policy_actions"
        C2.net().FlattenToVec([C2.ArgMax(q_value_blob)], [max_q_act_idxs])
        max_q_act_blob = C2.Tile(max_q_act_idxs, num_examples, axis=0)

        # Get 1 x n (number of examples) action index tensor under the softmax policy
        temperature = C2.NextBlob("temperature")
        parameters.append(temperature)
        workspace.FeedBlob(
            temperature, np.array([trainer.rl_temperature], dtype=np.float32)
        )
        tempered_q_values = C2.Div(q_value_blob, temperature, broadcast=1)
        softmax_values = C2.Softmax(tempered_q_values)
        softmax_act_idxs_nested = "softmax_act_idxs_nested"
        C2.net().WeightedSample([softmax_values], [softmax_act_idxs_nested])
        softmax_act_blob = C2.Tile(
            C2.FlattenToVec(softmax_act_idxs_nested), num_examples, axis=0
        )

        # Concat action idx vecs to get 2 x n tensor [[a_maxq, ..], [a_softmax, ..]]
        # transpose & flatten to get [a_maxq, a_softmax, a_maxq, a_softmax, ...]
        max_q_act_blob = C2.Cast(max_q_act_blob, to=caffe2_pb2.TensorProto.INT64)
        softmax_act_blob = C2.Cast(softmax_act_blob, to=caffe2_pb2.TensorProto.INT64)
        max_q_act_blob_nested, _ = C2.Reshape(max_q_act_blob, shape=[1, -1])
        softmax_act_blob_nested, _ = C2.Reshape(softmax_act_blob, shape=[1, -1])
        C2.net().Append(
            [max_q_act_blob_nested, softmax_act_blob_nested], [max_q_act_blob_nested]
        )
        transposed_action_idxs = C2.Transpose(max_q_act_blob_nested)
        flat_transposed_action_idxs = C2.FlattenToVec(transposed_action_idxs)
        output_values = "output/int_single_categorical_features.values"
        workspace.FeedBlob(output_values, np.zeros(1, dtype=np.int64))
        C2.net().Copy([flat_transposed_action_idxs], [output_values])

        output_lengths = "output/int_single_categorical_features.lengths"
        workspace.FeedBlob(output_lengths, np.zeros(1, dtype=np.int32))
        C2.net().ConstantFill(
            [flat_q_values_key],
            [output_lengths],
            value=2,
            dtype=caffe2_pb2.TensorProto.INT32,
        )

        output_keys = "output/int_single_categorical_features.keys"
        workspace.FeedBlob(output_keys, np.zeros(1, dtype=np.int64))
        output_keys_tensor, _ = C2.Concat(
            C2.ConstantFill(shape=[1, 1], value=0, dtype=caffe2_pb2.TensorProto.INT64),
            C2.ConstantFill(shape=[1, 1], value=1, dtype=caffe2_pb2.TensorProto.INT64),
            axis=0,
        )
        output_key_tile = C2.Tile(output_keys_tensor, num_examples, axis=0)
        C2.net().FlattenToVec([output_key_tile], [output_keys])

        workspace.CreateNet(net)
        return ParametricDQNPredictor(net, torch_init_net, parameters, int_features)
示例#8
0
    def export(
        cls,
        trainer,
        state_normalization_parameters,
        action_normalization_parameters,
    ):
        """ Creates ContinuousActionDQNPredictor from a list of action trainers

        :param trainer ContinuousActionDQNPredictor
        :param state_features list of state feature names
        :param action_features list of action feature names
        """
        # ensure state and action IDs have no intersection
        assert (len(
            set(state_normalization_parameters.keys())
            & set(action_normalization_parameters.keys())) == 0)

        model = model_helper.ModelHelper(name="predictor")
        net = model.net
        C2.set_model(model)

        workspace.FeedBlob('input/float_features.lengths',
                           np.zeros(1, dtype=np.int32))
        workspace.FeedBlob('input/float_features.keys',
                           np.zeros(1, dtype=np.int32))
        workspace.FeedBlob('input/float_features.values',
                           np.zeros(1, dtype=np.float32))

        preprocessor = PreprocessorNet(net, True)
        parameters = []
        parameters.extend(preprocessor.parameters)
        state_normalized_dense_matrix, new_parameters = \
            preprocessor.normalize_sparse_matrix(
                'input/float_features.lengths',
                'input/float_features.keys',
                'input/float_features.values',
                state_normalization_parameters,
                'state_norm',
            )
        parameters.extend(new_parameters)
        action_normalized_dense_matrix, new_parameters = \
            preprocessor.normalize_sparse_matrix(
                'input/float_features.lengths',
                'input/float_features.keys',
                'input/float_features.values',
                action_normalization_parameters,
                'action_norm',
            )
        parameters.extend(new_parameters)
        state_action_normalized = 'state_action_normalized'
        state_action_normalized_dim = 'state_action_normalized_dim'
        net.Concat(
            [state_normalized_dense_matrix, action_normalized_dense_matrix],
            [state_action_normalized, state_action_normalized_dim],
            axis=1)
        new_parameters, q_values = RLPredictor._forward_pass(
            model,
            trainer,
            state_action_normalized,
            ['Q'],
        )
        parameters.extend(new_parameters)

        flat_q_values_key = \
            'output/string_weighted_multi_categorical_features.values.values'
        num_examples, _ = C2.Reshape(C2.Size(flat_q_values_key), shape=[1])
        q_value_blob, _ = C2.Reshape(flat_q_values_key, shape=[1, -1])

        # Get 1 x n (number of examples) action index tensor under the max_q policy
        max_q_act_idxs = 'max_q_policy_actions'
        C2.net().FlattenToVec([C2.ArgMax(q_value_blob)], [max_q_act_idxs])
        max_q_act_blob = C2.Tile(max_q_act_idxs, num_examples, axis=0)

        # Get 1 x n (number of examples) action index tensor under the softmax policy
        temperature = C2.NextBlob("temperature")
        parameters.append(temperature)
        workspace.FeedBlob(
            temperature, np.array([trainer.rl_temperature], dtype=np.float32))
        tempered_q_values = C2.Div(q_value_blob, "temperature", broadcast=1)
        softmax_values = C2.Softmax(tempered_q_values)
        softmax_act_idxs_nested = 'softmax_act_idxs_nested'
        C2.net().WeightedSample([softmax_values], [softmax_act_idxs_nested])
        softmax_act_blob = C2.Tile(C2.FlattenToVec(softmax_act_idxs_nested),
                                   num_examples,
                                   axis=0)

        # Concat action idx vecs to get 2 x n tensor [[a_maxq, ..], [a_softmax, ..]]
        # transpose & flatten to get [a_maxq, a_softmax, a_maxq, a_softmax, ...]
        max_q_act_blob = C2.Cast(max_q_act_blob,
                                 to=caffe2_pb2.TensorProto.INT64)
        softmax_act_blob = C2.Cast(softmax_act_blob,
                                   to=caffe2_pb2.TensorProto.INT64)
        max_q_act_blob_nested, _ = C2.Reshape(max_q_act_blob, shape=[1, -1])
        softmax_act_blob_nested, _ = C2.Reshape(softmax_act_blob,
                                                shape=[1, -1])
        C2.net().Append([max_q_act_blob_nested, softmax_act_blob_nested],
                        [max_q_act_blob_nested])
        transposed_action_idxs = C2.Transpose(max_q_act_blob_nested)
        flat_transposed_action_idxs = C2.FlattenToVec(transposed_action_idxs)
        output_values = 'output/int_single_categorical_features.values'
        workspace.FeedBlob(output_values, np.zeros(1, dtype=np.int64))
        C2.net().Copy([flat_transposed_action_idxs], [output_values])

        output_lengths = 'output/int_single_categorical_features.lengths'
        workspace.FeedBlob(output_lengths, np.zeros(1, dtype=np.int32))
        C2.net().ConstantFill([flat_q_values_key], [output_lengths],
                              value=2,
                              dtype=caffe2_pb2.TensorProto.INT32)

        output_keys = 'output/int_single_categorical_features.keys'
        workspace.FeedBlob(output_keys, np.zeros(1, dtype=np.int64))
        output_keys_tensor, _ = C2.Concat(
            C2.ConstantFill(shape=[1, 1],
                            value=0,
                            dtype=caffe2_pb2.TensorProto.INT64),
            C2.ConstantFill(shape=[1, 1],
                            value=1,
                            dtype=caffe2_pb2.TensorProto.INT64),
            axis=0,
        )
        output_key_tile = C2.Tile(output_keys_tensor, num_examples, axis=0)
        C2.net().FlattenToVec([output_key_tile], [output_keys])

        workspace.RunNetOnce(model.param_init_net)
        workspace.CreateNet(net)
        return ContinuousActionDQNPredictor(net, parameters)
示例#9
0
    def export(
        cls,
        trainer,
        actions,
        state_normalization_parameters,
        int_features=False,
        model_on_gpu=False,
        set_missing_value_to_zero=False,
    ):
        """Export caffe2 preprocessor net and pytorch DQN forward pass as one
        caffe2 net.

        :param trainer DQNTrainer
        :param state_normalization_parameters state NormalizationParameters
        :param int_features boolean indicating if int features blob will be present
        :param model_on_gpu boolean indicating if the model is a GPU model or CPU model
        """

        input_dim = trainer.num_features

        q_network = (trainer.q_network.module if isinstance(
            trainer.q_network, DataParallel) else trainer.q_network)

        buffer = PytorchCaffe2Converter.pytorch_net_to_buffer(
            q_network, input_dim, model_on_gpu)
        qnet_input_blob, qnet_output_blob, caffe2_netdef = PytorchCaffe2Converter.buffer_to_caffe2_netdef(
            buffer)
        torch_workspace = caffe2_netdef.workspace

        parameters = torch_workspace.Blobs()
        for blob_str in parameters:
            workspace.FeedBlob(blob_str, torch_workspace.FetchBlob(blob_str))

        torch_init_net = core.Net(caffe2_netdef.init_net)
        torch_predict_net = core.Net(caffe2_netdef.predict_net)
        logger.info("Generated ONNX predict net:")
        logger.info(str(torch_predict_net.Proto()))
        # While converting to metanetdef, the external_input of predict_net
        # will be recomputed. Add the real output of init_net to parameters
        # to make sure they will be counted.
        parameters.extend(
            set(caffe2_netdef.init_net.external_output) -
            set(caffe2_netdef.init_net.external_input))

        model = model_helper.ModelHelper(name="predictor")
        net = model.net
        C2.set_model(model)

        workspace.FeedBlob("input/image", np.zeros([1, 1, 1, 1],
                                                   dtype=np.int32))
        workspace.FeedBlob("input/float_features.lengths",
                           np.zeros(1, dtype=np.int32))
        workspace.FeedBlob("input/float_features.keys",
                           np.zeros(1, dtype=np.int64))
        workspace.FeedBlob("input/float_features.values",
                           np.zeros(1, dtype=np.float32))

        input_feature_lengths = "input_feature_lengths"
        input_feature_keys = "input_feature_keys"
        input_feature_values = "input_feature_values"

        if int_features:
            workspace.FeedBlob("input/int_features.lengths",
                               np.zeros(1, dtype=np.int32))
            workspace.FeedBlob("input/int_features.keys",
                               np.zeros(1, dtype=np.int64))
            workspace.FeedBlob("input/int_features.values",
                               np.zeros(1, dtype=np.int32))
            C2.net().Cast(
                ["input/int_features.values"],
                ["input/int_features.values_float"],
                dtype=caffe2_pb2.TensorProto.FLOAT,
            )
            C2.net().MergeMultiScalarFeatureTensors(
                [
                    "input/float_features.lengths",
                    "input/float_features.keys",
                    "input/float_features.values",
                    "input/int_features.lengths",
                    "input/int_features.keys",
                    "input/int_features.values_float",
                ],
                [
                    input_feature_lengths, input_feature_keys,
                    input_feature_values
                ],
            )
        else:
            C2.net().Copy(["input/float_features.lengths"],
                          [input_feature_lengths])
            C2.net().Copy(["input/float_features.keys"], [input_feature_keys])
            C2.net().Copy(["input/float_features.values"],
                          [input_feature_values])

        if state_normalization_parameters is not None:
            sorted_feature_ids = sort_features_by_normalization(
                state_normalization_parameters)[0]
            dense_matrix, new_parameters = sparse_to_dense(
                input_feature_lengths,
                input_feature_keys,
                input_feature_values,
                sorted_feature_ids,
                set_missing_value_to_zero=set_missing_value_to_zero,
            )
            parameters.extend(new_parameters)
            preprocessor_net = PreprocessorNet()
            state_normalized_dense_matrix, new_parameters = preprocessor_net.normalize_dense_matrix(
                dense_matrix,
                sorted_feature_ids,
                state_normalization_parameters,
                "state_norm_",
                True,
            )
            parameters.extend(new_parameters)
        else:
            # Image input.  Note: Currently this does the wrong thing if
            #   more than one image is passed at a time.
            state_normalized_dense_matrix = "input/image"

        net.Copy([state_normalized_dense_matrix], [qnet_input_blob])

        workspace.RunNetOnce(model.param_init_net)
        workspace.RunNetOnce(torch_init_net)

        net.AppendNet(torch_predict_net)

        new_parameters, q_values = RLPredictor._forward_pass(
            model, trainer, state_normalized_dense_matrix, actions,
            qnet_output_blob)
        parameters.extend(new_parameters)

        # Get 1 x n action index tensor under the max_q policy
        max_q_act_idxs = "max_q_policy_actions"
        C2.net().Flatten([C2.ArgMax(q_values)], [max_q_act_idxs], axis=0)
        shape_of_num_of_states = "num_states_shape"
        C2.net().FlattenToVec([max_q_act_idxs], [shape_of_num_of_states])
        num_states, _ = C2.Reshape(C2.Size(shape_of_num_of_states), shape=[1])

        # Get 1 x n action index tensor under the softmax policy
        temperature = C2.NextBlob("temperature")
        parameters.append(temperature)
        workspace.FeedBlob(
            temperature, np.array([trainer.rl_temperature], dtype=np.float32))
        tempered_q_values = C2.Div(q_values, temperature, broadcast=1)
        softmax_values = C2.Softmax(tempered_q_values)
        softmax_act_idxs_nested = "softmax_act_idxs_nested"
        C2.net().WeightedSample([softmax_values], [softmax_act_idxs_nested])
        softmax_act_idxs = "softmax_policy_actions"
        C2.net().Flatten([softmax_act_idxs_nested], [softmax_act_idxs], axis=0)

        action_names = C2.NextBlob("action_names")
        parameters.append(action_names)
        workspace.FeedBlob(action_names, np.array(actions))

        # Concat action index tensors to get 2 x n tensor - [[max_q], [softmax]]
        # transpose & flatten to get [a1_maxq, a1_softmax, a2_maxq, a2_softmax, ...]
        max_q_act_blob = C2.Cast(max_q_act_idxs,
                                 to=caffe2_pb2.TensorProto.INT32)
        softmax_act_blob = C2.Cast(softmax_act_idxs,
                                   to=caffe2_pb2.TensorProto.INT32)
        C2.net().Append([max_q_act_blob, softmax_act_blob], [max_q_act_blob])
        transposed_action_idxs = C2.Transpose(max_q_act_blob)
        flat_transposed_action_idxs = C2.FlattenToVec(transposed_action_idxs)
        workspace.FeedBlob(OUTPUT_SINGLE_CAT_VALS_NAME,
                           np.zeros(1, dtype=np.int64))
        C2.net().Gather([action_names, flat_transposed_action_idxs],
                        [OUTPUT_SINGLE_CAT_VALS_NAME])

        workspace.FeedBlob(OUTPUT_SINGLE_CAT_LENGTHS_NAME,
                           np.zeros(1, dtype=np.int32))
        C2.net().ConstantFill(
            [shape_of_num_of_states],
            [OUTPUT_SINGLE_CAT_LENGTHS_NAME],
            value=2,
            dtype=caffe2_pb2.TensorProto.INT32,
        )

        workspace.FeedBlob(OUTPUT_SINGLE_CAT_KEYS_NAME,
                           np.zeros(1, dtype=np.int64))
        output_keys_tensor, _ = C2.Concat(
            C2.ConstantFill(shape=[1, 1],
                            value=0,
                            dtype=caffe2_pb2.TensorProto.INT64),
            C2.ConstantFill(shape=[1, 1],
                            value=1,
                            dtype=caffe2_pb2.TensorProto.INT64),
            axis=0,
        )
        output_key_tile = C2.Tile(output_keys_tensor, num_states, axis=0)
        C2.net().FlattenToVec([output_key_tile], [OUTPUT_SINGLE_CAT_KEYS_NAME])

        workspace.CreateNet(net)
        return DQNPredictor(net, torch_init_net, parameters, int_features)
    def export(
        cls,
        trainer,
        state_normalization_parameters,
        action_normalization_parameters,
        int_features=False,
    ):
        """ Creates a ContinuousActionDQNPredictor from a ContinuousActionDQNTrainer.

        :param trainer ContinuousActionDQNTrainer
        :param state_normalization_parameters state NormalizationParameters
        :param action_normalization_parameters action NormalizationParameters
        :param int_features boolean indicating if int features blob will be present
        """
        # ensure state and action IDs have no intersection
        assert (
            len(
                set(state_normalization_parameters.keys())
                & set(action_normalization_parameters.keys())
            )
            == 0
        )

        model = model_helper.ModelHelper(name="predictor")
        net = model.net
        C2.set_model(model)

        workspace.FeedBlob("input/float_features.lengths", np.zeros(1, dtype=np.int32))
        workspace.FeedBlob("input/float_features.keys", np.zeros(1, dtype=np.int64))
        workspace.FeedBlob("input/float_features.values", np.zeros(1, dtype=np.float32))

        input_feature_lengths = "input_feature_lengths"
        input_feature_keys = "input_feature_keys"
        input_feature_values = "input_feature_values"

        if int_features:
            workspace.FeedBlob(
                "input/int_features.lengths", np.zeros(1, dtype=np.int32)
            )
            workspace.FeedBlob("input/int_features.keys", np.zeros(1, dtype=np.int64))
            workspace.FeedBlob("input/int_features.values", np.zeros(1, dtype=np.int32))
            C2.net().Cast(
                ["input/int_features.values"],
                ["input/int_features.values_float"],
                dtype=caffe2_pb2.TensorProto.FLOAT,
            )
            C2.net().MergeMultiScalarFeatureTensors(
                [
                    "input/float_features.lengths",
                    "input/float_features.keys",
                    "input/float_features.values",
                    "input/int_features.lengths",
                    "input/int_features.keys",
                    "input/int_features.values_float",
                ],
                [input_feature_lengths, input_feature_keys, input_feature_values],
            )
        else:
            C2.net().Copy(["input/float_features.lengths"], [input_feature_lengths])
            C2.net().Copy(["input/float_features.keys"], [input_feature_keys])
            C2.net().Copy(["input/float_features.values"], [input_feature_values])

        parameters = []
        state_normalized_dense_matrix, new_parameters = sparse_to_dense(
            input_feature_lengths,
            input_feature_keys,
            input_feature_values,
            state_normalization_parameters,
            None,
        )
        parameters.extend(new_parameters)
        action_normalized_dense_matrix, new_parameters = sparse_to_dense(
            input_feature_lengths,
            input_feature_keys,
            input_feature_values,
            action_normalization_parameters,
            None,
        )
        parameters.extend(new_parameters)
        state_action_normalized = "state_action_normalized"
        state_action_normalized_dim = "state_action_normalized_dim"
        net.Concat(
            [state_normalized_dense_matrix, action_normalized_dense_matrix],
            [state_action_normalized, state_action_normalized_dim],
            axis=1,
        )
        new_parameters, q_values = RLPredictor._forward_pass(
            model, trainer, state_action_normalized, ["Q"]
        )
        parameters.extend(new_parameters)

        flat_q_values_key = (
            "output/string_weighted_multi_categorical_features.values.values"
        )
        num_examples, _ = C2.Reshape(C2.Size(flat_q_values_key), shape=[1])
        q_value_blob, _ = C2.Reshape(flat_q_values_key, shape=[1, -1])

        # Get 1 x n (number of examples) action index tensor under the max_q policy
        max_q_act_idxs = "max_q_policy_actions"
        C2.net().FlattenToVec([C2.ArgMax(q_value_blob)], [max_q_act_idxs])
        max_q_act_blob = C2.Tile(max_q_act_idxs, num_examples, axis=0)

        # Get 1 x n (number of examples) action index tensor under the softmax policy
        temperature = C2.NextBlob("temperature")
        parameters.append(temperature)
        workspace.FeedBlob(
            temperature, np.array([trainer.rl_temperature], dtype=np.float32)
        )
        tempered_q_values = C2.Div(q_value_blob, temperature, broadcast=1)
        softmax_values = C2.Softmax(tempered_q_values)
        softmax_act_idxs_nested = "softmax_act_idxs_nested"
        C2.net().WeightedSample([softmax_values], [softmax_act_idxs_nested])
        softmax_act_blob = C2.Tile(
            C2.FlattenToVec(softmax_act_idxs_nested), num_examples, axis=0
        )

        # Concat action idx vecs to get 2 x n tensor [[a_maxq, ..], [a_softmax, ..]]
        # transpose & flatten to get [a_maxq, a_softmax, a_maxq, a_softmax, ...]
        max_q_act_blob = C2.Cast(max_q_act_blob, to=caffe2_pb2.TensorProto.INT64)
        softmax_act_blob = C2.Cast(softmax_act_blob, to=caffe2_pb2.TensorProto.INT64)
        max_q_act_blob_nested, _ = C2.Reshape(max_q_act_blob, shape=[1, -1])
        softmax_act_blob_nested, _ = C2.Reshape(softmax_act_blob, shape=[1, -1])
        C2.net().Append(
            [max_q_act_blob_nested, softmax_act_blob_nested], [max_q_act_blob_nested]
        )
        transposed_action_idxs = C2.Transpose(max_q_act_blob_nested)
        flat_transposed_action_idxs = C2.FlattenToVec(transposed_action_idxs)
        output_values = "output/int_single_categorical_features.values"
        workspace.FeedBlob(output_values, np.zeros(1, dtype=np.int64))
        C2.net().Copy([flat_transposed_action_idxs], [output_values])

        output_lengths = "output/int_single_categorical_features.lengths"
        workspace.FeedBlob(output_lengths, np.zeros(1, dtype=np.int32))
        C2.net().ConstantFill(
            [flat_q_values_key],
            [output_lengths],
            value=2,
            dtype=caffe2_pb2.TensorProto.INT32,
        )

        output_keys = "output/int_single_categorical_features.keys"
        workspace.FeedBlob(output_keys, np.zeros(1, dtype=np.int64))
        output_keys_tensor, _ = C2.Concat(
            C2.ConstantFill(shape=[1, 1], value=0, dtype=caffe2_pb2.TensorProto.INT64),
            C2.ConstantFill(shape=[1, 1], value=1, dtype=caffe2_pb2.TensorProto.INT64),
            axis=0,
        )
        output_key_tile = C2.Tile(output_keys_tensor, num_examples, axis=0)
        C2.net().FlattenToVec([output_key_tile], [output_keys])

        workspace.RunNetOnce(model.param_init_net)
        workspace.CreateNet(net)
        return ContinuousActionDQNPredictor(net, parameters, int_features)