def __init__(
        self,
        model_params: ContinuousActionModelParameters,
        preprocess_handler: PreprocessHandler,
        state_normalization: Dict[int, NormalizationParameters],
        action_normalization: Dict[int, NormalizationParameters],
        use_gpu: bool,
        use_all_avail_gpus: bool,
    ):
        logger.info("Running Parametric DQN workflow with params:")
        logger.info(model_params)
        model_params = model_params

        trainer = ParametricDQNTrainer(
            model_params,
            state_normalization,
            action_normalization,
            use_gpu=use_gpu,
            use_all_avail_gpus=use_all_avail_gpus,
        )
        trainer = update_model_for_warm_start(trainer)
        assert (type(trainer) == ParametricDQNTrainer
                ), "Warm started wrong model type: " + str(type(trainer))

        evaluator = Evaluator(
            None,
            model_params.rl.gamma,
            trainer,
            metrics_to_score=trainer.metrics_to_score,
        )

        super(ParametricDqnWorkflow,
              self).__init__(preprocess_handler, trainer, evaluator,
                             model_params.training.minibatch_size)
示例#2
0
    def __init__(
        self,
        model_params: DiscreteActionModelParameters,
        state_normalization: Dict[int, NormalizationParameters],
        use_gpu: bool,
        use_all_avail_gpus: bool,
    ):
        logger.info("Running DQN workflow with params:")
        logger.info(model_params)
        model_params = model_params

        trainer = create_dqn_trainer_from_params(
            model_params,
            state_normalization,
            use_gpu=use_gpu,
            use_all_avail_gpus=use_all_avail_gpus,
        )
        trainer = update_model_for_warm_start(trainer)
        assert type(trainer) == DQNTrainer, "Warm started wrong model type: " + str(
            type(trainer)
        )

        evaluator = Evaluator(
            model_params.actions,
            model_params.rl.gamma,
            trainer,
            metrics_to_score=trainer.metrics_to_score,
        )

        super().__init__(
            DiscreteDqnBatchPreprocessor(Preprocessor(state_normalization, use_gpu)),
            trainer,
            evaluator,
            model_params.training.minibatch_size,
        )
示例#3
0
    def train(self, train_dataset: Dataset, eval_dataset: Optional[Dataset],
              num_epochs: int) -> RLTrainingOutput:
        """
        Train the model

        Returns partially filled RLTrainningOutput. The field that should not be filled
        are:
        - output_path
        - warmstart_output_path
        - vis_metrics
        - validation_output
        """
        logger.info("Creating reporter")
        reporter = DiscreteDQNReporter(
            self.trainer_param.actions,
            target_action_distribution=self.target_action_distribution,
        )
        logger.info("Adding reporter to trainer")
        self.trainer.add_observer(reporter)

        training_page_handler = TrainingPageHandler(self.trainer)
        training_page_handler.add_observer(reporter)
        evaluator = Evaluator(
            self.action_names,
            self.rl_parameters.gamma,
            self.trainer,
            metrics_to_score=self.metrics_to_score,
        )
        logger.info("Adding reporter to evaluator")
        evaluator.add_observer(reporter)
        evaluation_page_handler = EvaluationPageHandler(
            self.trainer, evaluator, reporter)

        batch_preprocessor = self.build_batch_preprocessor()
        train_and_evaluate_generic(
            train_dataset,
            eval_dataset,
            self.trainer,
            num_epochs,
            self.use_gpu,
            batch_preprocessor,
            training_page_handler,
            evaluation_page_handler,
            reader_options=self.reader_options,
        )
        return RLTrainingOutput(
            training_report=reporter.generate_training_report())
示例#4
0
    def __init__(
        self,
        model_params: ContinuousActionModelParameters,
        preprocess_handler: PreprocessHandler,
        state_normalization: Dict[int, NormalizationParameters],
        action_normalization: Dict[int, NormalizationParameters],
        use_gpu: bool,
        use_all_avail_gpus: bool,
    ):
        logger.info("Running continuous workflow with params:")
        logger.info(model_params)
        model_params = model_params

        min_action_range_tensor_serving, max_action_range_tensor_serving = construct_action_scale_tensor(
            action_normalization, model_params.action_rescale_map)

        trainer = DDPGTrainer(
            model_params,
            state_normalization,
            action_normalization,
            min_action_range_tensor_serving,
            max_action_range_tensor_serving,
            use_gpu=use_gpu,
            use_all_avail_gpus=use_all_avail_gpus,
        )
        trainer = update_model_for_warm_start(trainer)
        assert type(
            trainer) == DDPGTrainer, "Warm started wrong model type: " + str(
                type(trainer))

        evaluator = Evaluator(
            None,
            model_params.rl.gamma,
            trainer,
            metrics_to_score=trainer.metrics_to_score,
        )

        super(ContinuousWorkflow, self).__init__(
            preprocess_handler,
            trainer,
            evaluator,
            model_params.shared_training.minibatch_size,
        )
示例#5
0
def train_network(params):
    writer = None
    if params["model_output_path"] is not None:
        writer = SummaryWriter(log_dir=params["model_output_path"])

    logger.info("Running DQN workflow with params:")
    logger.info(params)

    # Set minibatch size based on # of devices being used to train
    params["training"]["minibatch_size"] *= minibatch_size_multiplier(
        params["use_gpu"], params["use_all_avail_gpus"])

    action_names = np.array(params["actions"])
    rl_parameters = RLParameters(**params["rl"])
    training_parameters = TrainingParameters(**params["training"])
    rainbow_parameters = RainbowDQNParameters(**params["rainbow"])

    trainer_params = DiscreteActionModelParameters(
        actions=params["actions"],
        rl=rl_parameters,
        training=training_parameters,
        rainbow=rainbow_parameters,
    )

    dataset = JSONDataset(params["training_data_path"],
                          batch_size=training_parameters.minibatch_size)
    eval_dataset = JSONDataset(params["eval_data_path"], batch_size=16)
    state_normalization = read_norm_file(params["state_norm_data_path"])

    num_batches = int(len(dataset) / training_parameters.minibatch_size)
    logger.info("Read in batch data set {} of size {} examples. Data split "
                "into {} batches of size {}.".format(
                    params["training_data_path"],
                    len(dataset),
                    num_batches,
                    training_parameters.minibatch_size,
                ))

    trainer = DQNTrainer(
        trainer_params,
        state_normalization,
        use_gpu=params["use_gpu"],
        use_all_avail_gpus=params["use_all_avail_gpus"],
    )
    trainer = update_model_for_warm_start(trainer)
    preprocessor = Preprocessor(state_normalization, False)

    evaluator = Evaluator(
        trainer_params.actions,
        trainer_params.rl.gamma,
        trainer,
        metrics_to_score=trainer.metrics_to_score,
    )

    start_time = time.time()
    for epoch in range(int(params["epochs"])):
        dataset.reset_iterator()
        for batch_idx in range(num_batches):
            report_training_status(batch_idx, num_batches, epoch,
                                   int(params["epochs"]))
            batch = dataset.read_batch(batch_idx)
            tdp = preprocess_batch_for_training(preprocessor, batch,
                                                action_names)

            tdp.set_type(trainer.dtype)
            trainer.train(tdp)

        eval_dataset.reset_iterator()
        accumulated_edp = None
        while True:
            batch = eval_dataset.read_batch(batch_idx)
            if batch is None:
                break
            tdp = preprocess_batch_for_training(preprocessor, batch,
                                                action_names)
            edp = EvaluationDataPage.create_from_tdp(tdp, trainer)
            if accumulated_edp is None:
                accumulated_edp = edp
            else:
                accumulated_edp = accumulated_edp.append(edp)
        accumulated_edp = accumulated_edp.compute_values(trainer.gamma)

        cpe_start_time = time.time()
        details = evaluator.evaluate_post_training(accumulated_edp)
        details.log()
        logger.info("CPE evaluation took {} seconds.".format(time.time() -
                                                             cpe_start_time))

    through_put = (len(dataset) * int(params["epochs"])) / (time.time() -
                                                            start_time)
    logger.info("Training finished. Processed ~{} examples / s.".format(
        round(through_put)))

    if writer is not None:
        writer.close()

    return export_trainer_and_predictor(trainer, params["model_output_path"])
def train_network(params):
    logger.info("Running Parametric DQN workflow with params:")
    logger.info(params)

    # Set minibatch size based on # of devices being used to train
    params["training"]["minibatch_size"] *= minibatch_size_multiplier(
        params["use_gpu"], params["use_all_avail_gpus"])

    rl_parameters = RLParameters(**params["rl"])
    training_parameters = TrainingParameters(**params["training"])
    rainbow_parameters = RainbowDQNParameters(**params["rainbow"])
    if params["in_training_cpe"] is not None:
        in_training_cpe_parameters = InTrainingCPEParameters(
            **params["in_training_cpe"])
    else:
        in_training_cpe_parameters = None

    trainer_params = ContinuousActionModelParameters(
        rl=rl_parameters,
        training=training_parameters,
        rainbow=rainbow_parameters,
        in_training_cpe=in_training_cpe_parameters,
    )

    dataset = JSONDataset(params["training_data_path"],
                          batch_size=training_parameters.minibatch_size)
    eval_dataset = JSONDataset(params["eval_data_path"],
                               batch_size=training_parameters.minibatch_size)
    state_normalization = read_norm_file(params["state_norm_data_path"])
    action_normalization = read_norm_file(params["action_norm_data_path"])

    num_batches = int(len(dataset) / training_parameters.minibatch_size)
    logger.info("Read in batch data set {} of size {} examples. Data split "
                "into {} batches of size {}.".format(
                    params["training_data_path"],
                    len(dataset),
                    num_batches,
                    training_parameters.minibatch_size,
                ))

    trainer = ParametricDQNTrainer(
        trainer_params,
        state_normalization,
        action_normalization,
        use_gpu=params["use_gpu"],
        use_all_avail_gpus=params["use_all_avail_gpus"],
    )
    trainer = update_model_for_warm_start(trainer)
    state_preprocessor = Preprocessor(state_normalization, False)
    action_preprocessor = Preprocessor(action_normalization, False)

    if trainer_params.in_training_cpe is not None:
        evaluator = Evaluator(
            None,
            trainer_params.rl.gamma,
            trainer,
            trainer_params.in_training_cpe.mdp_sampled_rate,
            metrics_to_score=trainer.metrics_to_score,
        )
    else:
        evaluator = Evaluator(
            None,
            trainer_params.rl.gamma,
            trainer,
            float(DEFAULT_NUM_SAMPLES_FOR_CPE) / len(dataset),
            metrics_to_score=trainer.metrics_to_score,
        )

    start_time = time.time()
    for epoch in range(params["epochs"]):
        dataset.reset_iterator()
        for batch_idx in range(num_batches):
            report_training_status(batch_idx, num_batches, epoch,
                                   params["epochs"])
            batch = dataset.read_batch(batch_idx)
            tdp = preprocess_batch_for_training(
                state_preprocessor,
                batch,
                action_preprocessor=action_preprocessor)

            tdp.set_type(trainer.dtype)
            trainer.train(tdp)

        eval_dataset.reset_iterator()
        accumulated_edp = None
        for batch_idx in range(num_batches):
            batch = eval_dataset.read_batch(batch_idx)
            tdp = preprocess_batch_for_training(
                state_preprocessor,
                batch,
                action_preprocessor=action_preprocessor)
            edp = EvaluationDataPage.create_from_tdp(tdp, trainer)
            if accumulated_edp is None:
                accumulated_edp = edp
            else:
                accumulated_edp = accumulated_edp.append(edp)
        accumulated_edp = accumulated_edp.compute_values(trainer.gamma)

        cpe_start_time = time.time()
        details = evaluator.evaluate_post_training(accumulated_edp)
        details.log()
        logger.info("CPE evaluation took {} seconds.".format(time.time() -
                                                             cpe_start_time))

    through_put = (len(dataset) * params["epochs"]) / (time.time() -
                                                       start_time)
    logger.info("Training finished. Processed ~{} examples / s.".format(
        round(through_put)))

    return export_trainer_and_predictor(trainer, params["model_output_path"])
示例#7
0
def train_network(params):
    writer = None
    if params["model_output_path"] is not None:
        writer = SummaryWriter(log_dir=params["model_output_path"])

    logger.info("Running DQN workflow with params:")
    logger.info(params)

    # Set minibatch size based on # of devices being used to train
    params["training"]["minibatch_size"] *= minibatch_size_multiplier(
        params["use_gpu"], params["use_all_avail_gpus"]
    )

    action_names = np.array(params["actions"])
    rl_parameters = RLParameters(**params["rl"])
    training_parameters = TrainingParameters(**params["training"])
    rainbow_parameters = RainbowDQNParameters(**params["rainbow"])

    trainer_params = DiscreteActionModelParameters(
        actions=params["actions"],
        rl=rl_parameters,
        training=training_parameters,
        rainbow=rainbow_parameters,
    )

    dataset = JSONDataset(
        params["training_data_path"], batch_size=training_parameters.minibatch_size
    )
    eval_dataset = JSONDataset(params["eval_data_path"], batch_size=16)
    state_normalization = read_norm_file(params["state_norm_data_path"])

    num_batches = int(len(dataset) / training_parameters.minibatch_size)
    logger.info(
        "Read in batch data set {} of size {} examples. Data split "
        "into {} batches of size {}.".format(
            params["training_data_path"],
            len(dataset),
            num_batches,
            training_parameters.minibatch_size,
        )
    )

    trainer = DQNTrainer(
        trainer_params,
        state_normalization,
        use_gpu=params["use_gpu"],
        use_all_avail_gpus=params["use_all_avail_gpus"],
    )
    trainer = update_model_for_warm_start(trainer)
    preprocessor = Preprocessor(state_normalization, False)

    evaluator = Evaluator(
        trainer_params.actions,
        trainer_params.rl.gamma,
        trainer,
        metrics_to_score=trainer.metrics_to_score,
    )

    start_time = time.time()
    for epoch in range(int(params["epochs"])):
        dataset.reset_iterator()
        batch_idx = -1
        while True:
            batch_idx += 1
            report_training_status(batch_idx, num_batches, epoch, int(params["epochs"]))
            batch = dataset.read_batch()
            if batch is None:
                break
            tdp = preprocess_batch_for_training(preprocessor, batch, action_names)

            tdp.set_type(trainer.dtype)
            trainer.train(tdp)

        eval_dataset.reset_iterator()
        accumulated_edp = None
        while True:
            batch = eval_dataset.read_batch()
            if batch is None:
                break
            tdp = preprocess_batch_for_training(preprocessor, batch, action_names)
            tdp.set_type(trainer.dtype)
            edp = EvaluationDataPage.create_from_tdp(tdp, trainer)
            if accumulated_edp is None:
                accumulated_edp = edp
            else:
                accumulated_edp = accumulated_edp.append(edp)
        accumulated_edp = accumulated_edp.compute_values(trainer.gamma)

        cpe_start_time = time.time()
        details = evaluator.evaluate_post_training(accumulated_edp)
        details.log()
        logger.info(
            "CPE evaluation took {} seconds.".format(time.time() - cpe_start_time)
        )

    through_put = (len(dataset) * int(params["epochs"])) / (time.time() - start_time)
    logger.info(
        "Training finished. Processed ~{} examples / s.".format(round(through_put))
    )

    if writer is not None:
        writer.close()

    return export_trainer_and_predictor(trainer, params["model_output_path"])
示例#8
0
    def __init__(
        self,
        model_params: ContinuousActionModelParameters,
        preprocess_handler: PreprocessHandler,
        state_normalization: Dict[int, NormalizationParameters],
        action_normalization: Dict[int, NormalizationParameters],
        use_gpu: bool,
        use_all_avail_gpus: bool,
    ):
        logger.info("Running continuous workflow with params:")
        logger.info(model_params)
        model_params = model_params

        min_action_range_tensor_serving, max_action_range_tensor_serving = construct_action_scale_tensor(
            action_normalization, model_params.action_rescale_map
        )

        state_dim = get_num_output_features(state_normalization)
        action_dim = get_num_output_features(action_normalization)

        # Build Actor Network
        actor_network = ActorNetModel(
            layers=(
                [state_dim] + model_params.actor_training.layers[1:-1] + [action_dim]
            ),
            activations=model_params.actor_training.activations,
            fl_init=model_params.shared_training.final_layer_init,
            state_dim=state_dim,
            action_dim=action_dim,
        )

        # Build Critic Network
        critic_network = CriticNetModel(
            # Ensure dims match input state and scalar output
            layers=[state_dim] + model_params.critic_training.layers[1:-1] + [1],
            activations=model_params.critic_training.activations,
            fl_init=model_params.shared_training.final_layer_init,
            state_dim=state_dim,
            action_dim=action_dim,
        )

        trainer = DDPGTrainer(
            actor_network,
            critic_network,
            model_params,
            state_normalization,
            action_normalization,
            min_action_range_tensor_serving,
            max_action_range_tensor_serving,
            use_gpu=use_gpu,
            use_all_avail_gpus=use_all_avail_gpus,
        )
        trainer = update_model_for_warm_start(trainer)
        assert type(trainer) == DDPGTrainer, "Warm started wrong model type: " + str(
            type(trainer)
        )

        evaluator = Evaluator(
            None,
            model_params.rl.gamma,
            trainer,
            metrics_to_score=trainer.metrics_to_score,
        )

        super().__init__(
            preprocess_handler,
            trainer,
            evaluator,
            model_params.shared_training.minibatch_size,
        )