def get_modular_sarsa_trainer_reward_boost( self, environment, reward_shape, dueling, use_gpu=False, use_all_avail_gpus=False, clip_grad_norm=None, ): parameters = self.get_sarsa_parameters(environment, reward_shape, dueling, clip_grad_norm) q_network = FullyConnectedDQN( state_dim=get_num_output_features(environment.normalization), action_dim=len(environment.ACTIONS), sizes=parameters.training.layers[1:-1], activations=parameters.training.activations[:-1], ) reward_network = FullyConnectedDQN( state_dim=get_num_output_features(environment.normalization), action_dim=len(environment.ACTIONS), sizes=parameters.training.layers[1:-1], activations=parameters.training.activations[:-1], ) q_network_cpe = FullyConnectedDQN( state_dim=get_num_output_features(environment.normalization), action_dim=len(environment.ACTIONS), sizes=parameters.training.layers[1:-1], activations=parameters.training.activations[:-1], ) if use_gpu: q_network = q_network.cuda() reward_network = reward_network.cuda() q_network_cpe = q_network_cpe.cuda() if use_all_avail_gpus: q_network = q_network.get_distributed_data_parallel_model() reward_network = reward_network.get_distributed_data_parallel_model( ) q_network_cpe = q_network_cpe.get_distributed_data_parallel_model( ) q_network_target = q_network.get_target_network() q_network_cpe_target = q_network_cpe.get_target_network() trainer = DQNTrainer( q_network, q_network_target, reward_network, parameters, use_gpu, q_network_cpe=q_network_cpe, q_network_cpe_target=q_network_cpe_target, ) return trainer
def create_dqn_trainer_from_params( model: DiscreteActionModelParameters, normalization_parameters: Dict[int, NormalizationParameters], use_gpu: bool = False, use_all_avail_gpus: bool = False, metrics_to_score=None, ): metrics_to_score = metrics_to_score or [] if model.rainbow.quantile: q_network = QuantileDQN( state_dim=get_num_output_features(normalization_parameters), action_dim=len(model.actions), num_atoms=model.rainbow.num_atoms, sizes=model.training.layers[1:-1], activations=model.training.activations[:-1], dropout_ratio=model.training.dropout_ratio, ) elif model.rainbow.categorical: q_network = CategoricalDQN( # type: ignore state_dim=get_num_output_features(normalization_parameters), action_dim=len(model.actions), num_atoms=model.rainbow.num_atoms, qmin=model.rainbow.qmin, qmax=model.rainbow.qmax, sizes=model.training.layers[1:-1], activations=model.training.activations[:-1], dropout_ratio=model.training.dropout_ratio, use_gpu=use_gpu, ) elif model.rainbow.dueling_architecture: q_network = DuelingQNetwork( # type: ignore layers=[get_num_output_features(normalization_parameters)] + model.training.layers[1:-1] + [len(model.actions)], activations=model.training.activations, ) else: q_network = FullyConnectedDQN( # type: ignore state_dim=get_num_output_features(normalization_parameters), action_dim=len(model.actions), sizes=model.training.layers[1:-1], activations=model.training.activations[:-1], dropout_ratio=model.training.dropout_ratio, ) if use_gpu and torch.cuda.is_available(): q_network = q_network.cuda() q_network_target = q_network.get_target_network() reward_network, q_network_cpe, q_network_cpe_target = None, None, None if model.evaluation.calc_cpe_in_training: # Metrics + reward num_output_nodes = (len(metrics_to_score) + 1) * len(model.actions) reward_network = FullyConnectedDQN( state_dim=get_num_output_features(normalization_parameters), action_dim=num_output_nodes, sizes=model.training.layers[1:-1], activations=model.training.activations[:-1], dropout_ratio=model.training.dropout_ratio, ) q_network_cpe = FullyConnectedDQN( state_dim=get_num_output_features(normalization_parameters), action_dim=num_output_nodes, sizes=model.training.layers[1:-1], activations=model.training.activations[:-1], dropout_ratio=model.training.dropout_ratio, ) if use_gpu and torch.cuda.is_available(): reward_network.cuda() q_network_cpe.cuda() q_network_cpe_target = q_network_cpe.get_target_network() if (use_all_avail_gpus and not model.rainbow.categorical and not model.rainbow.quantile): q_network = q_network.get_distributed_data_parallel_model() reward_network = (reward_network.get_distributed_data_parallel_model() if reward_network else None) q_network_cpe = (q_network_cpe.get_distributed_data_parallel_model() if q_network_cpe else None) if model.rainbow.quantile: assert (not use_all_avail_gpus ), "use_all_avail_gpus not implemented for distributional RL" return QRDQNTrainer( q_network, q_network_target, model, use_gpu, metrics_to_score=metrics_to_score, ) elif model.rainbow.categorical: assert (not use_all_avail_gpus ), "use_all_avail_gpus not implemented for distributional RL" return C51Trainer( q_network, q_network_target, model, use_gpu, metrics_to_score=metrics_to_score, ) else: return DQNTrainer( q_network, q_network_target, reward_network, model, use_gpu, q_network_cpe=q_network_cpe, q_network_cpe_target=q_network_cpe_target, metrics_to_score=metrics_to_score, )
def get_modular_sarsa_trainer_reward_boost( self, environment, reward_shape, dueling, categorical, quantile, use_gpu=False, use_all_avail_gpus=False, clip_grad_norm=None, ): assert not quantile or not categorical parameters = self.get_sarsa_parameters(environment, reward_shape, dueling, categorical, quantile, clip_grad_norm) if quantile: if dueling: q_network = DuelingQuantileDQN( layers=[ get_num_output_features(environment.normalization) ] + parameters.training.layers[1:-1] + [len(environment.ACTIONS)], activations=parameters.training.activations, num_atoms=parameters.rainbow.num_atoms, ) else: q_network = QuantileDQN( state_dim=get_num_output_features( environment.normalization), action_dim=len(environment.ACTIONS), num_atoms=parameters.rainbow.num_atoms, sizes=parameters.training.layers[1:-1], activations=parameters.training.activations[:-1], ) elif categorical: assert not dueling q_network = CategoricalDQN( state_dim=get_num_output_features(environment.normalization), action_dim=len(environment.ACTIONS), num_atoms=parameters.rainbow.num_atoms, qmin=-100, qmax=200, sizes=parameters.training.layers[1:-1], activations=parameters.training.activations[:-1], ) else: if dueling: q_network = DuelingQNetwork( layers=[ get_num_output_features(environment.normalization) ] + parameters.training.layers[1:-1] + [len(environment.ACTIONS)], activations=parameters.training.activations, ) else: q_network = FullyConnectedDQN( state_dim=get_num_output_features( environment.normalization), action_dim=len(environment.ACTIONS), sizes=parameters.training.layers[1:-1], activations=parameters.training.activations[:-1], ) q_network_cpe, q_network_cpe_target, reward_network = None, None, None if parameters.evaluation and parameters.evaluation.calc_cpe_in_training: q_network_cpe = FullyConnectedDQN( state_dim=get_num_output_features(environment.normalization), action_dim=len(environment.ACTIONS), sizes=parameters.training.layers[1:-1], activations=parameters.training.activations[:-1], ) q_network_cpe_target = q_network_cpe.get_target_network() reward_network = FullyConnectedDQN( state_dim=get_num_output_features(environment.normalization), action_dim=len(environment.ACTIONS), sizes=parameters.training.layers[1:-1], activations=parameters.training.activations[:-1], ) if use_gpu: q_network = q_network.cuda() if parameters.evaluation.calc_cpe_in_training: reward_network = reward_network.cuda() q_network_cpe = q_network_cpe.cuda() q_network_cpe_target = q_network_cpe_target.cuda() if use_all_avail_gpus and not categorical: q_network = q_network.get_distributed_data_parallel_model() reward_network = reward_network.get_distributed_data_parallel_model( ) q_network_cpe = q_network_cpe.get_distributed_data_parallel_model( ) q_network_cpe_target = ( q_network_cpe_target.get_distributed_data_parallel_model()) if quantile: trainer = QRDQNTrainer( q_network, q_network.get_target_network(), parameters, use_gpu, reward_network=reward_network, q_network_cpe=q_network_cpe, q_network_cpe_target=q_network_cpe_target, ) elif categorical: trainer = C51Trainer(q_network, q_network.get_target_network(), parameters, use_gpu) else: parameters = DQNTrainerParameters.from_discrete_action_model_parameters( parameters) trainer = DQNTrainer( q_network, q_network.get_target_network(), reward_network, parameters, use_gpu, q_network_cpe=q_network_cpe, q_network_cpe_target=q_network_cpe_target, ) return trainer
def get_modular_sarsa_trainer_reward_boost( self, environment, reward_shape, dueling, categorical, quantile, use_gpu=False, use_all_avail_gpus=False, clip_grad_norm=None, ): parameters = self.get_sarsa_parameters(environment, reward_shape, dueling, categorical, quantile, clip_grad_norm) if quantile: q_network = QuantileDQN( state_dim=get_num_output_features(environment.normalization), action_dim=len(environment.ACTIONS), num_atoms=50, sizes=parameters.training.layers[1:-1], activations=parameters.training.activations[:-1], ) parameters.rainbow.num_atoms = 50 elif categorical: q_network = CategoricalDQN( state_dim=get_num_output_features(environment.normalization), action_dim=len(environment.ACTIONS), num_atoms=51, qmin=-100, qmax=200, sizes=parameters.training.layers[1:-1], activations=parameters.training.activations[:-1], ) else: q_network = FullyConnectedDQN( state_dim=get_num_output_features(environment.normalization), action_dim=len(environment.ACTIONS), sizes=parameters.training.layers[1:-1], activations=parameters.training.activations[:-1], ) q_network_cpe = FullyConnectedDQN( state_dim=get_num_output_features(environment.normalization), action_dim=len(environment.ACTIONS), sizes=parameters.training.layers[1:-1], activations=parameters.training.activations[:-1], ) reward_network = FullyConnectedDQN( state_dim=get_num_output_features(environment.normalization), action_dim=len(environment.ACTIONS), sizes=parameters.training.layers[1:-1], activations=parameters.training.activations[:-1], ) if use_gpu: q_network = q_network.cuda() if not categorical and not quantile: reward_network = reward_network.cuda() q_network_cpe = q_network_cpe.cuda() if use_all_avail_gpus and not categorical: q_network = q_network.get_distributed_data_parallel_model() reward_network = reward_network.get_distributed_data_parallel_model( ) q_network_cpe = q_network_cpe.get_distributed_data_parallel_model( ) if quantile: trainer = QRDQNTrainer(q_network, q_network.get_target_network(), parameters, use_gpu) elif categorical: trainer = C51Trainer(q_network, q_network.get_target_network(), parameters, use_gpu) else: trainer = DQNTrainer( q_network, q_network.get_target_network(), reward_network, parameters, use_gpu, q_network_cpe=q_network_cpe, q_network_cpe_target=q_network_cpe.get_target_network(), ) return trainer
def create_park_dqn_trainer_from_params( model: DiscreteActionModelParameters, normalization_parameters: Dict[int, NormalizationParameters], use_gpu: bool = False, use_all_avail_gpus: bool = False, metrics_to_score=None, env=None): metrics_to_score = metrics_to_score or [] if model.rainbow.dueling_architecture: q_network = DuelingQNetwork( layers=[get_num_output_features(normalization_parameters)] + model.training.layers[1:-1] + [len(model.actions)], activations=model.training.activations, ) else: q_network = FullyConnectedDQN( state_dim=get_num_output_features(normalization_parameters), action_dim=len(model.actions), sizes=model.training.layers[1:-1], activations=model.training.activations[:-1], dropout_ratio=model.training.dropout_ratio, ) if use_gpu and torch.cuda.is_available(): q_network = q_network.cuda() q_network_target = q_network.get_target_network() reward_network, q_network_cpe, q_network_cpe_target = None, None, None if model.evaluation.calc_cpe_in_training: # Metrics + reward num_output_nodes = (len(metrics_to_score) + 1) * len(model.actions) reward_network = FullyConnectedDQN( state_dim=get_num_output_features(normalization_parameters), action_dim=num_output_nodes, sizes=model.training.layers[1:-1], activations=model.training.activations[:-1], dropout_ratio=model.training.dropout_ratio, ) q_network_cpe = FullyConnectedDQN( state_dim=get_num_output_features(normalization_parameters), action_dim=num_output_nodes, sizes=model.training.layers[1:-1], activations=model.training.activations[:-1], dropout_ratio=model.training.dropout_ratio, ) if use_gpu and torch.cuda.is_available(): reward_network.cuda() q_network_cpe.cuda() q_network_cpe_target = q_network_cpe.get_target_network() if use_all_avail_gpus: q_network = q_network.get_distributed_data_parallel_model() reward_network = (reward_network.get_distributed_data_parallel_model() if reward_network else None) q_network_cpe = (q_network_cpe.get_distributed_data_parallel_model() if q_network_cpe else None) return ParkDQNTrainer(q_network, q_network_target, reward_network, model, use_gpu, q_network_cpe=q_network_cpe, q_network_cpe_target=q_network_cpe_target, metrics_to_score=metrics_to_score, env=env)