def test_discrete_action(self):
     state_dim = 8
     action_dim = 4
     model = DuelingQNetwork(
         layers=[state_dim, 8, 4, action_dim],
         activations=["relu", "relu", "linear"],
         use_batch_norm=True,
     )
     input = model.input_prototype()
     self.assertEqual((1, state_dim), input.state.float_features.shape)
     # Using batch norm requires more than 1 example in training, avoid that
     model.eval()
     q_values = model(input)
     self.assertEqual((1, action_dim), q_values.q_values.shape)
 def test_save_load_discrete_action_batch_norm(self):
     state_dim = 8
     action_dim = 4
     model = DuelingQNetwork(
         layers=[state_dim, 8, 4, action_dim],
         activations=["relu", "relu", "linear"],
         use_batch_norm=False,
     )
     # Freezing batch_norm
     model.eval()
     # Number of expected params is the same because DuelingQNetwork always
     # initialize batch norm layer even if it doesn't use it.
     expected_num_params, expected_num_inputs, expected_num_outputs = 22, 1, 1
     check_save_load(self, model, expected_num_params, expected_num_inputs,
                     expected_num_outputs)
示例#3
0
 def _get_model(self, training_parameters, dueling_architecture=False):
     if dueling_architecture:
         return DuelingQNetwork(
             training_parameters.layers,
             training_parameters.activations,
             action_dim=self.num_action_features,
         )
     elif training_parameters.factorization_parameters is None:
         return FullyConnectedNetwork(
             training_parameters.layers,
             training_parameters.activations,
             use_noisy_linear_layers=training_parameters.
             use_noisy_linear_layers,
         )
     else:
         return ParametricInnerProduct(
             FullyConnectedNetwork(
                 training_parameters.factorization_parameters.state.layers,
                 training_parameters.factorization_parameters.state.
                 activations,
             ),
             FullyConnectedNetwork(
                 training_parameters.factorization_parameters.action.layers,
                 training_parameters.factorization_parameters.action.
                 activations,
             ),
             self.num_state_features,
             self.num_action_features,
         )
示例#4
0
 def build_q_network(
     self,
     state_normalization_parameters: Dict[int, NormalizationParameters],
     output_dim: int,
 ) -> ModelBase:
     state_dim = self._get_input_dim(state_normalization_parameters)
     return DuelingQNetwork(
         layers=[state_dim] + self.config.sizes + [output_dim],
         activations=self.config.activations + ["linear"],
     )
 def test_save_load_discrete_action(self):
     state_dim = 8
     action_dim = 4
     model = DuelingQNetwork(
         layers=[state_dim, 8, 4, action_dim],
         activations=["relu", "relu", "linear"],
         use_batch_norm=False,
     )
     expected_num_params, expected_num_inputs, expected_num_outputs = 22, 1, 1
     check_save_load(self, model, expected_num_params, expected_num_inputs,
                     expected_num_outputs)
示例#6
0
def create_dqn_trainer_from_params(
    model: DiscreteActionModelParameters,
    normalization_parameters: Dict[int, NormalizationParameters],
    use_gpu: bool = False,
    use_all_avail_gpus: bool = False,
    metrics_to_score=None,
):
    metrics_to_score = metrics_to_score or []

    if model.rainbow.quantile:
        q_network = QuantileDQN(
            state_dim=get_num_output_features(normalization_parameters),
            action_dim=len(model.actions),
            num_atoms=model.rainbow.num_atoms,
            sizes=model.training.layers[1:-1],
            activations=model.training.activations[:-1],
            dropout_ratio=model.training.dropout_ratio,
        )
    elif model.rainbow.categorical:
        q_network = CategoricalDQN(  # type: ignore
            state_dim=get_num_output_features(normalization_parameters),
            action_dim=len(model.actions),
            num_atoms=model.rainbow.num_atoms,
            qmin=model.rainbow.qmin,
            qmax=model.rainbow.qmax,
            sizes=model.training.layers[1:-1],
            activations=model.training.activations[:-1],
            dropout_ratio=model.training.dropout_ratio,
            use_gpu=use_gpu,
        )
    elif model.rainbow.dueling_architecture:
        q_network = DuelingQNetwork(  # type: ignore
            layers=[get_num_output_features(normalization_parameters)] +
            model.training.layers[1:-1] + [len(model.actions)],
            activations=model.training.activations,
        )
    else:
        q_network = FullyConnectedDQN(  # type: ignore
            state_dim=get_num_output_features(normalization_parameters),
            action_dim=len(model.actions),
            sizes=model.training.layers[1:-1],
            activations=model.training.activations[:-1],
            dropout_ratio=model.training.dropout_ratio,
        )

    if use_gpu and torch.cuda.is_available():
        q_network = q_network.cuda()

    q_network_target = q_network.get_target_network()

    reward_network, q_network_cpe, q_network_cpe_target = None, None, None
    if model.evaluation.calc_cpe_in_training:
        # Metrics + reward
        num_output_nodes = (len(metrics_to_score) + 1) * len(model.actions)
        reward_network = FullyConnectedDQN(
            state_dim=get_num_output_features(normalization_parameters),
            action_dim=num_output_nodes,
            sizes=model.training.layers[1:-1],
            activations=model.training.activations[:-1],
            dropout_ratio=model.training.dropout_ratio,
        )
        q_network_cpe = FullyConnectedDQN(
            state_dim=get_num_output_features(normalization_parameters),
            action_dim=num_output_nodes,
            sizes=model.training.layers[1:-1],
            activations=model.training.activations[:-1],
            dropout_ratio=model.training.dropout_ratio,
        )

        if use_gpu and torch.cuda.is_available():
            reward_network.cuda()
            q_network_cpe.cuda()

        q_network_cpe_target = q_network_cpe.get_target_network()

    if (use_all_avail_gpus and not model.rainbow.categorical
            and not model.rainbow.quantile):
        q_network = q_network.get_distributed_data_parallel_model()
        reward_network = (reward_network.get_distributed_data_parallel_model()
                          if reward_network else None)
        q_network_cpe = (q_network_cpe.get_distributed_data_parallel_model()
                         if q_network_cpe else None)

    if model.rainbow.quantile:
        assert (not use_all_avail_gpus
                ), "use_all_avail_gpus not implemented for distributional RL"
        return QRDQNTrainer(
            q_network,
            q_network_target,
            model,
            use_gpu,
            metrics_to_score=metrics_to_score,
        )

    elif model.rainbow.categorical:
        assert (not use_all_avail_gpus
                ), "use_all_avail_gpus not implemented for distributional RL"
        return C51Trainer(
            q_network,
            q_network_target,
            model,
            use_gpu,
            metrics_to_score=metrics_to_score,
        )

    else:
        return DQNTrainer(
            q_network,
            q_network_target,
            reward_network,
            model,
            use_gpu,
            q_network_cpe=q_network_cpe,
            q_network_cpe_target=q_network_cpe_target,
            metrics_to_score=metrics_to_score,
        )
    def get_modular_sarsa_trainer_reward_boost(
        self,
        environment,
        reward_shape,
        dueling,
        categorical,
        quantile,
        use_gpu=False,
        use_all_avail_gpus=False,
        clip_grad_norm=None,
    ):
        assert not quantile or not categorical
        parameters = self.get_sarsa_parameters(environment, reward_shape,
                                               dueling, categorical, quantile,
                                               clip_grad_norm)

        if quantile:
            if dueling:
                q_network = DuelingQuantileDQN(
                    layers=[
                        get_num_output_features(environment.normalization)
                    ] + parameters.training.layers[1:-1] +
                    [len(environment.ACTIONS)],
                    activations=parameters.training.activations,
                    num_atoms=parameters.rainbow.num_atoms,
                )
            else:
                q_network = QuantileDQN(
                    state_dim=get_num_output_features(
                        environment.normalization),
                    action_dim=len(environment.ACTIONS),
                    num_atoms=parameters.rainbow.num_atoms,
                    sizes=parameters.training.layers[1:-1],
                    activations=parameters.training.activations[:-1],
                )
        elif categorical:
            assert not dueling
            q_network = CategoricalDQN(
                state_dim=get_num_output_features(environment.normalization),
                action_dim=len(environment.ACTIONS),
                num_atoms=parameters.rainbow.num_atoms,
                qmin=-100,
                qmax=200,
                sizes=parameters.training.layers[1:-1],
                activations=parameters.training.activations[:-1],
            )
        else:
            if dueling:
                q_network = DuelingQNetwork(
                    layers=[
                        get_num_output_features(environment.normalization)
                    ] + parameters.training.layers[1:-1] +
                    [len(environment.ACTIONS)],
                    activations=parameters.training.activations,
                )
            else:
                q_network = FullyConnectedDQN(
                    state_dim=get_num_output_features(
                        environment.normalization),
                    action_dim=len(environment.ACTIONS),
                    sizes=parameters.training.layers[1:-1],
                    activations=parameters.training.activations[:-1],
                )

        q_network_cpe, q_network_cpe_target, reward_network = None, None, None

        if parameters.evaluation and parameters.evaluation.calc_cpe_in_training:
            q_network_cpe = FullyConnectedDQN(
                state_dim=get_num_output_features(environment.normalization),
                action_dim=len(environment.ACTIONS),
                sizes=parameters.training.layers[1:-1],
                activations=parameters.training.activations[:-1],
            )
            q_network_cpe_target = q_network_cpe.get_target_network()
            reward_network = FullyConnectedDQN(
                state_dim=get_num_output_features(environment.normalization),
                action_dim=len(environment.ACTIONS),
                sizes=parameters.training.layers[1:-1],
                activations=parameters.training.activations[:-1],
            )

        if use_gpu:
            q_network = q_network.cuda()
            if parameters.evaluation.calc_cpe_in_training:
                reward_network = reward_network.cuda()
                q_network_cpe = q_network_cpe.cuda()
                q_network_cpe_target = q_network_cpe_target.cuda()
            if use_all_avail_gpus and not categorical:
                q_network = q_network.get_distributed_data_parallel_model()
                reward_network = reward_network.get_distributed_data_parallel_model(
                )
                q_network_cpe = q_network_cpe.get_distributed_data_parallel_model(
                )
                q_network_cpe_target = (
                    q_network_cpe_target.get_distributed_data_parallel_model())

        if quantile:
            trainer = QRDQNTrainer(
                q_network,
                q_network.get_target_network(),
                parameters,
                use_gpu,
                reward_network=reward_network,
                q_network_cpe=q_network_cpe,
                q_network_cpe_target=q_network_cpe_target,
            )
        elif categorical:
            trainer = C51Trainer(q_network, q_network.get_target_network(),
                                 parameters, use_gpu)
        else:
            parameters = DQNTrainerParameters.from_discrete_action_model_parameters(
                parameters)
            trainer = DQNTrainer(
                q_network,
                q_network.get_target_network(),
                reward_network,
                parameters,
                use_gpu,
                q_network_cpe=q_network_cpe,
                q_network_cpe_target=q_network_cpe_target,
            )
        return trainer
示例#8
0
    def __init__(
        self,
        parameters: DiscreteActionModelParameters,
        state_normalization_parameters: Dict[int, NormalizationParameters],
        use_gpu: bool = False,
        additional_feature_types:
        AdditionalFeatureTypes = DEFAULT_ADDITIONAL_FEATURE_TYPES,
        metrics_to_score=None,
        gradient_handler=None,
        use_all_avail_gpus: bool = False,
    ) -> None:

        self.double_q_learning = parameters.rainbow.double_q_learning
        self.warm_start_model_path = parameters.training.warm_start_model_path
        self.minibatch_size = parameters.training.minibatch_size
        self._actions = parameters.actions if parameters.actions is not None else []

        if parameters.training.cnn_parameters is None:
            self.state_normalization_parameters: Optional[Dict[
                int, NormalizationParameters]] = state_normalization_parameters
            self.num_features = get_num_output_features(
                state_normalization_parameters)
            logger.info("Number of state features: " + str(self.num_features))
            parameters.training.layers[0] = self.num_features
        else:
            self.state_normalization_parameters = None
        parameters.training.layers[-1] = self.num_actions

        RLTrainer.__init__(
            self,
            parameters,
            use_gpu,
            additional_feature_types,
            metrics_to_score,
            gradient_handler,
            actions=self._actions,
        )

        self.reward_boosts = torch.zeros([1,
                                          len(self._actions)]).type(self.dtype)
        if parameters.rl.reward_boost is not None:
            for k in parameters.rl.reward_boost.keys():
                i = self._actions.index(k)
                self.reward_boosts[0, i] = parameters.rl.reward_boost[k]

        if parameters.rainbow.dueling_architecture:
            self.q_network = DuelingQNetwork(
                parameters.training.layers,
                parameters.training.activations,
                use_batch_norm=parameters.training.use_batch_norm,
            )
        else:
            if parameters.training.cnn_parameters is None:
                self.q_network = FullyConnectedNetwork(
                    parameters.training.layers,
                    parameters.training.activations,
                    use_noisy_linear_layers=parameters.training.
                    use_noisy_linear_layers,
                    min_std=parameters.training.weight_init_min_std,
                    use_batch_norm=parameters.training.use_batch_norm,
                )
            else:
                self.q_network = ConvolutionalNetwork(
                    parameters.training.cnn_parameters,
                    parameters.training.layers,
                    parameters.training.activations,
                    use_noisy_linear_layers=parameters.training.
                    use_noisy_linear_layers,
                    min_std=parameters.training.weight_init_min_std,
                    use_batch_norm=parameters.training.use_batch_norm,
                )

        self.q_network_target = deepcopy(self.q_network)
        self.q_network._name = "training"
        self.q_network_target._name = "target"
        self._set_optimizer(parameters.training.optimizer)
        self.q_network_optimizer = self.optimizer_func(
            self.q_network.parameters(),
            lr=parameters.training.learning_rate,
            weight_decay=parameters.training.l2_decay,
        )

        self._init_cpe_networks(parameters, use_all_avail_gpus)

        if self.use_gpu:
            self.q_network.cuda()
            self.q_network_target.cuda()

            if use_all_avail_gpus:
                self.q_network = torch.nn.DataParallel(self.q_network)
                self.q_network_target = torch.nn.DataParallel(
                    self.q_network_target)
示例#9
0
def create_dqn_trainer_from_params(
    model: DiscreteActionModelParameters,
    normalization_parameters: Dict[int, NormalizationParameters],
    use_gpu: bool = False,
    metrics_to_score=None,
):
    metrics_to_score = metrics_to_score or []
    if model.rainbow.dueling_architecture:
        q_network = DuelingQNetwork(
            layers=[get_num_output_features(normalization_parameters)] +
            model.training.layers[1:-1] + [len(model.actions)],
            activations=model.training.activations,
        )
    else:
        q_network = FullyConnectedDQN(
            state_dim=get_num_output_features(normalization_parameters),
            action_dim=len(model.actions),
            sizes=model.training.layers[1:-1],
            activations=model.training.activations[:-1],
            dropout_ratio=model.training.dropout_ratio,
        )

    if use_gpu and torch.cuda.is_available():
        q_network = q_network.cuda()

    q_network_target = q_network.get_target_network()

    reward_network, q_network_cpe, q_network_cpe_target = None, None, None
    if model.evaluation.calc_cpe_in_training:
        # Metrics + reward
        num_output_nodes = (len(metrics_to_score) + 1) * len(model.actions)
        reward_network = FullyConnectedDQN(
            state_dim=get_num_output_features(normalization_parameters),
            action_dim=num_output_nodes,
            sizes=model.training.layers[1:-1],
            activations=model.training.activations[:-1],
            dropout_ratio=model.training.dropout_ratio,
        )
        q_network_cpe = FullyConnectedDQN(
            state_dim=get_num_output_features(normalization_parameters),
            action_dim=num_output_nodes,
            sizes=model.training.layers[1:-1],
            activations=model.training.activations[:-1],
            dropout_ratio=model.training.dropout_ratio,
        )

        if use_gpu and torch.cuda.is_available():
            reward_network.cuda()
            q_network_cpe.cuda()

        q_network_cpe_target = q_network_cpe.get_target_network()

    return DQNTrainer(
        q_network,
        q_network_target,
        reward_network,
        model,
        use_gpu,
        q_network_cpe=q_network_cpe,
        q_network_cpe_target=q_network_cpe_target,
        metrics_to_score=metrics_to_score,
    )