def get_sarsa_parameters(self, environment, reward_shape, dueling, categorical, quantile, clip_grad_norm): rl_parameters = RLParameters( gamma=DISCOUNT, target_update_rate=1.0, maxq_learning=False, reward_boost=reward_shape, ) training_parameters = TrainingParameters( layers=[-1, 128, -1] if dueling else [-1, -1], activations=["relu", "relu"] if dueling else ["linear"], minibatch_size=self.minibatch_size, learning_rate=0.05, optimizer="ADAM", clip_grad_norm=clip_grad_norm, ) return DiscreteActionModelParameters( actions=environment.ACTIONS, rl=rl_parameters, training=training_parameters, rainbow=RainbowDQNParameters( double_q_learning=True, dueling_architecture=dueling, categorical=categorical, quantile=quantile, num_atoms=5, ), )
def test_minibatches_per_step(self): _epochs = self.epochs self.epochs = 2 rl_parameters = RLParameters(gamma=0.95, target_update_rate=0.9, maxq_learning=True) rainbow_parameters = RainbowDQNParameters(double_q_learning=True, dueling_architecture=False) training_parameters1 = TrainingParameters( layers=self.layers, activations=self.activations, minibatch_size=1024, minibatches_per_step=1, learning_rate=0.25, optimizer="ADAM", ) training_parameters2 = TrainingParameters( layers=self.layers, activations=self.activations, minibatch_size=128, minibatches_per_step=8, learning_rate=0.25, optimizer="ADAM", ) env1 = Env(self.state_dims, self.action_dims) env2 = Env(self.state_dims, self.action_dims) model_parameters1 = DiscreteActionModelParameters( actions=env1.actions, rl=rl_parameters, rainbow=rainbow_parameters, training=training_parameters1, ) model_parameters2 = DiscreteActionModelParameters( actions=env2.actions, rl=rl_parameters, rainbow=rainbow_parameters, training=training_parameters2, ) # minibatch_size / 8, minibatches_per_step * 8 should give the same result logger.info("Training model 1") trainer1 = self._train(model_parameters1, env1) SummaryWriterContext._reset_globals() logger.info("Training model 2") trainer2 = self._train(model_parameters2, env2) weight1 = trainer1.q_network.fc.layers[-1].weight.detach().numpy() weight2 = trainer2.q_network.fc.layers[-1].weight.detach().numpy() # Due to numerical stability this tolerance has to be fairly high self.assertTrue(np.allclose(weight1, weight2, rtol=0.0, atol=1e-3)) self.epochs = _epochs
def get_sarsa_parameters(self): return ContinuousActionModelParameters( rl=RLParameters(gamma=DISCOUNT, target_update_rate=1.0, maxq_learning=False), training=TrainingParameters( layers=[-1, 256, 128, -1], activations=["relu", "relu", "linear"], minibatch_size=self.minibatch_size, learning_rate=0.05, optimizer="ADAM", ), rainbow=RainbowDQNParameters(double_q_learning=True, dueling_architecture=False), )
def test_trainer_maxq(self): env = Env(self.state_dims, self.action_dims) maxq_parameters = DiscreteActionModelParameters( actions=env.actions, rl=RLParameters(gamma=0.95, target_update_rate=0.9, maxq_learning=True), rainbow=RainbowDQNParameters(double_q_learning=True, dueling_architecture=False), training=TrainingParameters( layers=self.layers, activations=self.activations, minibatch_size=1024, learning_rate=0.25, optimizer="ADAM", ), ) # Q value should converge to very close to 20 trainer = self._train(maxq_parameters, env) avg_q_value_after_training = torch.mean(trainer.all_action_scores) self.assertLess(avg_q_value_after_training, 22) self.assertGreater(avg_q_value_after_training, 18)