示例#1
0
def main(params):
    # Set minibatch size based on # of devices being used to train
    params["shared_training"]["minibatch_size"] *= minibatch_size_multiplier(
        params["use_gpu"], params["use_all_avail_gpus"])

    rl_parameters = RLParameters(**params["rl"])
    training_parameters = DDPGTrainingParameters(**params["shared_training"])
    actor_parameters = DDPGNetworkParameters(**params["actor_training"])
    critic_parameters = DDPGNetworkParameters(**params["critic_training"])

    model_params = DDPGModelParameters(
        rl=rl_parameters,
        shared_training=training_parameters,
        actor_training=actor_parameters,
        critic_training=critic_parameters,
    )

    state_normalization = BaseWorkflow.read_norm_file(
        params["state_norm_data_path"])
    action_normalization = BaseWorkflow.read_norm_file(
        params["action_norm_data_path"])

    writer = SummaryWriter(log_dir=params["model_output_path"])
    logger.info("TensorBoard logging location is: {}".format(writer.log_dir))

    preprocess_handler = ContinuousPreprocessHandler(
        Preprocessor(state_normalization, False),
        Preprocessor(action_normalization, False),
        PandasSparseToDenseProcessor(),
    )

    workflow = ContinuousWorkflow(
        model_params,
        preprocess_handler,
        state_normalization,
        action_normalization,
        params["use_gpu"],
        params["use_all_avail_gpus"],
    )

    train_dataset = JSONDatasetReader(
        params["training_data_path"],
        batch_size=training_parameters.minibatch_size)
    eval_dataset = JSONDatasetReader(params["eval_data_path"], batch_size=16)

    with summary_writer_context(writer):
        workflow.train_network(train_dataset, eval_dataset,
                               int(params["epochs"]))
    return export_trainer_and_predictor(
        workflow.trainer,
        params["model_output_path"],
        exporter=_get_actor_exporter(
            trainer=workflow.trainer,
            state_normalization=state_normalization,
            action_normalization=action_normalization,
        ),
    )  # noqa
示例#2
0
def main(params):
    # Set minibatch size based on # of devices being used to train
    params["training"]["minibatch_size"] *= minibatch_size_multiplier(
        params["use_gpu"], params["use_all_avail_gpus"])

    rl_parameters = RLParameters(**params["rl"])
    training_parameters = TrainingParameters(**params["training"])
    rainbow_parameters = RainbowDQNParameters(**params["rainbow"])

    model_params = ContinuousActionModelParameters(
        rl=rl_parameters,
        training=training_parameters,
        rainbow=rainbow_parameters)
    state_normalization = BaseWorkflow.read_norm_file(
        params["state_norm_data_path"])
    action_normalization = BaseWorkflow.read_norm_file(
        params["action_norm_data_path"])

    writer = SummaryWriter(log_dir=params["model_output_path"])
    logger.info("TensorBoard logging location is: {}".format(writer.log_dir))

    preprocess_handler = ParametricDqnPreprocessHandler(
        Preprocessor(state_normalization, False),
        Preprocessor(action_normalization, False),
        PandasSparseToDenseProcessor(),
    )

    workflow = ParametricDqnWorkflow(
        model_params,
        preprocess_handler,
        state_normalization,
        action_normalization,
        params["use_gpu"],
        params["use_all_avail_gpus"],
    )

    train_dataset = JSONDatasetReader(
        params["training_data_path"],
        batch_size=training_parameters.minibatch_size)
    eval_dataset = JSONDatasetReader(params["eval_data_path"], batch_size=16)

    with summary_writer_context(writer):
        workflow.train_network(train_dataset, eval_dataset,
                               int(params["epochs"]))

    exporter = ParametricDQNExporter(
        workflow.trainer.q_network,
        PredictorFeatureExtractor(
            state_normalization_parameters=state_normalization,
            action_normalization_parameters=action_normalization,
        ),
        ParametricActionOutputTransformer(),
    )
    return export_trainer_and_predictor(workflow.trainer,
                                        params["model_output_path"],
                                        exporter=exporter)  # noqa
示例#3
0
def single_process_main(gpu_index, *args):
    params = args[0]
    # Set minibatch size based on # of devices being used to train
    params["training"]["minibatch_size"] *= minibatch_size_multiplier(
        params["use_gpu"], params["use_all_avail_gpus"]
    )

    action_names = params["actions"]

    rl_parameters = RLParameters(**params["rl"])
    training_parameters = TrainingParameters(**params["training"])
    rainbow_parameters = RainbowDQNParameters(**params["rainbow"])

    model_params = DiscreteActionModelParameters(
        actions=action_names,
        rl=rl_parameters,
        training=training_parameters,
        rainbow=rainbow_parameters,
    )
    state_normalization = BaseWorkflow.read_norm_file(params["state_norm_data_path"])

    writer = SummaryWriter(log_dir=params["model_output_path"])
    logger.info("TensorBoard logging location is: {}".format(writer.log_dir))

    if params["use_all_avail_gpus"]:
        BaseWorkflow.init_multiprocessing(
            int(params["num_processes_per_node"]),
            int(params["num_nodes"]),
            int(params["node_index"]),
            gpu_index,
            params["init_method"],
        )

    workflow = DqnWorkflow(
        model_params,
        state_normalization,
        params["use_gpu"],
        params["use_all_avail_gpus"],
    )

    sorted_features, _ = sort_features_by_normalization(state_normalization)
    preprocess_handler = DiscreteDqnPreprocessHandler(
        action_names, PandasSparseToDenseProcessor(sorted_features)
    )

    train_dataset = JSONDatasetReader(
        params["training_data_path"],
        batch_size=training_parameters.minibatch_size,
        preprocess_handler=preprocess_handler,
    )
    eval_dataset = JSONDatasetReader(
        params["eval_data_path"],
        batch_size=training_parameters.minibatch_size,
        preprocess_handler=preprocess_handler,
    )

    with summary_writer_context(writer):
        workflow.train_network(train_dataset, eval_dataset, int(params["epochs"]))

    exporter = DQNExporter(
        workflow.trainer.q_network,
        PredictorFeatureExtractor(state_normalization_parameters=state_normalization),
        DiscreteActionOutputTransformer(model_params.actions),
    )

    if int(params["node_index"]) == 0 and gpu_index == 0:
        export_trainer_and_predictor(
            workflow.trainer, params["model_output_path"], exporter=exporter
        )  # noqa
def single_process_main(gpu_index, *args):
    params = args[0]
    # Set minibatch size based on # of devices being used to train
    params["training"]["minibatch_size"] *= minibatch_size_multiplier(
        params["use_gpu"], params["use_all_avail_gpus"])

    rl_parameters = from_json(params["rl"], RLParameters)
    training_parameters = from_json(params["training"], TrainingParameters)
    rainbow_parameters = from_json(params["rainbow"], RainbowDQNParameters)

    model_params = ContinuousActionModelParameters(
        rl=rl_parameters,
        training=training_parameters,
        rainbow=rainbow_parameters)
    state_normalization = BaseWorkflow.read_norm_file(
        params["state_norm_data_path"])
    action_normalization = BaseWorkflow.read_norm_file(
        params["action_norm_data_path"])

    writer = SummaryWriter(log_dir=params["model_output_path"])
    logger.info("TensorBoard logging location is: {}".format(writer.log_dir))

    if params["use_all_avail_gpus"]:
        BaseWorkflow.init_multiprocessing(
            int(params["num_processes_per_node"]),
            int(params["num_nodes"]),
            int(params["node_index"]),
            gpu_index,
            params["init_method"],
        )

    workflow = ParametricDqnWorkflow(
        model_params,
        state_normalization,
        action_normalization,
        params["use_gpu"],
        params["use_all_avail_gpus"],
    )

    state_sorted_features, _ = sort_features_by_normalization(
        state_normalization)
    action_sorted_features, _ = sort_features_by_normalization(
        action_normalization)
    preprocess_handler = ParametricDqnPreprocessHandler(
        PandasSparseToDenseProcessor(state_sorted_features),
        PandasSparseToDenseProcessor(action_sorted_features),
    )

    train_dataset = JSONDatasetReader(
        params["training_data_path"],
        batch_size=training_parameters.minibatch_size,
        preprocess_handler=preprocess_handler,
    )
    eval_dataset = JSONDatasetReader(params["eval_data_path"],
                                     batch_size=16,
                                     preprocess_handler=preprocess_handler)

    with summary_writer_context(writer):
        workflow.train_network(train_dataset, eval_dataset,
                               int(params["epochs"]))

    if int(params["node_index"]) == 0 and gpu_index == 0:
        workflow.save_models(params["model_output_path"])