def make_last_layer(l3,w_shape,p_drop_hidden=0.0): w_h = ml_tools.init_kernels(w_shape[0]) hidden_layer = rectify(T.dot(l3, w_h)) l4 = dropout(hidden_layer, p_drop_hidden) w_o = ml_tools.init_kernels(w_shape[1]) out_layer = softmax(T.dot(l4, w_o)) last_layer=LastLayer(hidden_layer,w_h,out_layer,w_o) return last_layer
def make_conv_layer(in_data,w_shape,p_drop_conv=0.0, first=False,flat=False): w = ml_tools.init_kernels(w_shape) if(first): la = rectify(conv2d(in_data, w, border_mode='full')) else: la = rectify(conv2d(in_data, w)) l = max_pool_2d(la, (2, 2)) if(flat): l = T.flatten(l, outdim=2) layer=dropout(l, p_drop_conv) return ConvLayer(layer,w)