def test_bad_config(): brain_params = make_brain_parameters(discrete_action=False, visual_inputs=0, vec_obs_size=6) # Test that we throw an error if we have sequence length greater than batch size with pytest.raises(TrainerConfigError): TrainerSettings( network_settings=NetworkSettings( memory=NetworkSettings.MemorySettings(sequence_length=64)), hyperparameters=PPOSettings(batch_size=32), ) _ = PPOTrainer(brain_params, 0, dummy_config, True, False, 0, "0")
EnvironmentParametersChannel, ) from mlagents_envs.communicator_objects.demonstration_meta_pb2 import ( DemonstrationMetaProto, ) from mlagents_envs.communicator_objects.brain_parameters_pb2 import BrainParametersProto from mlagents_envs.communicator_objects.space_type_pb2 import discrete, continuous BRAIN_NAME = "1D" PPO_CONFIG = TrainerSettings( trainer_type=TrainerType.PPO, hyperparameters=PPOSettings( learning_rate=5.0e-3, learning_rate_schedule=ScheduleType.CONSTANT, batch_size=16, buffer_size=64, ), network_settings=NetworkSettings(num_layers=1, hidden_units=32), summary_freq=500, max_steps=3000, threaded=False, ) SAC_CONFIG = TrainerSettings( trainer_type=TrainerType.SAC, hyperparameters=SACSettings( learning_rate=5.0e-3, learning_rate_schedule=ScheduleType.CONSTANT, batch_size=8, buffer_init_steps=100,