示例#1
0
def detectDoubleExponentialSmoothingAnomalies(series, y, alpha, beta, threshold=2, mae = 0, deviation= 0, bound=IS_UPPER_BOUND, calculateScore=False, debug=False, returnAnomaliesOnly= True):

    yhat = double_exponential_smoothing(y, alpha, beta)

    # calculate confidence intervals for smoothed values
    if( mae==0 and deviation ==0 ):
        mae = mean_absolute_error(y, yhat)    
    if calculateScore==True or debug == True:
        mape = mean_absolute_percentage_error(y, yhat)
        logging.info("Mean absolute error is "+str(mae)+",  Mean absolute percentage_error is "+str(mape)+"%")
    if (mae ==0 and deviation == 0 ):
        deviation = np.std(y - yhat)
    lower_bond = yhat - (mae + threshold * deviation)
    upper_bond = yhat + (mae + threshold * deviation)
    if debug == True:
        logging.info(lower_bond)
        logging.info(upper_bond)
        logging.info(y)
    
    ts=[]
    adata=[]
    anomalies=[]
    myshape = series.shape
    nrow = myshape[0]
    i=0
    for i in range(nrow):
        isAnomaly = False
        if (not returnAnomaliesOnly):
            ts.append(series.index[i])
            adata.append(series.iloc[i,0])
        if bound==IS_UPPER_BOUND:
            if y[i] > upper_bond[i]:
                if returnAnomaliesOnly:
                    ts.append(series.index[i])
                    adata.append(y[i])
                isAnomaly = True
        elif bound==IS_LOWER_BOUND:
            if  y[i] < lower_bond[i]:
                if returnAnomaliesOnly:
                    ts.append(series.index[i])
                    adata.append(y[i])
                isAnomaly = True
        else:
            if y[i] > upper_bond[i] or y[i] < lower_bond[i]:
                if returnAnomaliesOnly:
                    ts.append(series.index[i])
                    adata.append(y[i])
                isAnomaly = True
        if returnAnomaliesOnly:
            if isAnomaly:
                anomalies.append(True)
        else:
            anomalies.append(isAnomaly)  
    #return mae, deviation, addHeader(ts,adata)
    if calculateScore:
        return mae, deviation, ts, adata, anomalies, mape
    return mae, deviation, ts, adata, anomalies
示例#2
0
def trainDoubleExponentialSmoothingParameters(y, alphas, betas):
    minmap = -1
    alpha = 0
    beta = 0
    for a in alphas:
        for b in betas:
            yhat = double_exponential_smoothing(y, a, b)
            mape = mean_absolute_percentage_error(y, yhat)
            if (minmap == -1):
                minmap = mape
                alpha = a
                beta = b
            elif minmap > mape:
                minmap = mape
                alpha = a
                beta = b
    return alpha, beta
示例#3
0
def calculateDoubleExponentialSmoothingParameters( series, alpha=0.95, beta=0.05,threshold = 2, calculateScore=False):
    y= series.y    
    yhat = double_exponential_smoothing(y.values, alpha, beta)
    # calculate confidence intervals for smoothed values
    mae = mean_absolute_error(y.values, yhat)   
       
    deviation = np.std(y.values - yhat)
    mape = 0
    if calculateScore:
        mape = mean_absolute_percentage_error(y.values, yhat)
        logging.info("Mean absolute error is "+str(mae)+",  Mean absolute percentage_error is "+str(mape)+"%")

    hlower_bound = yhat - (mae + threshold * deviation)
    hupper_bound = yhat + (mae + threshold * deviation) 
    if calculateScore:
        return hlower_bound[len(hlower_bound)-1], hupper_bound[len(hupper_bound)-1], mape
    return hlower_bound[len(hlower_bound)-1], hupper_bound[len(hupper_bound)-1]